The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

Articles used during ELM annotation

Currently 3287 articles annotated:

Roewenstrunk,2019 (30979931) Roewenstrunk J, Di Vona C, Chen J, Borras E, Dong C, Arato K, Sabido E, Huen MSY, de la Luna S "A comprehensive proteomics-based interaction screen that links DYRK1A to RNF169 and to the DNA damage response." Sci Rep 2019 Apr 12
Dysregulation of the DYRK1A protein kinase has been associated with human disease. On the one hand, its overexpression in trisomy 21 has been linked to certain pathological traits of Down syndrome, while on the other, inactivating mutations in just one allele are responsible for a distinct yet rare clinical syndrome, DYRK1A haploinsufficiency. Moreover, altered expression of this kinase may also provoke other human pathologies, including cancer and diabetes. Although a few DYRK1A substrates have been described, its upstream regulators and downstream targets are still poorly understood, an information that could shed light on the functions of DYRK1A in the cell. Here, we carried out a proteomic screen using antibody-based affinity purification coupled to mass spectrometry to identify proteins that directly or indirectly bind to endogenous DYRK1A. We show that the use of a cell line not expressing DYRK1A, generated by CRISPR/Cas9 technology, was needed in order to discriminate between true positives and non-specific interactions. Most of the proteins identified in the screen are novel candidate DYRK1A interactors linked to a variety of activities in the cell. The in-depth characterization of DYRK1A's functional interaction with one of them, the E3 ubiquitin ligase RNF169, revealed a role for this kinase in the DNA damage response. We found that RNF169 is a DYRK1A substrate and we identified several of its phosphorylation sites. In particular, one of these sites appears to modify the ability of RNF169 to displace 53BP1 from sites of DNA damage. Indeed, DYRK1A depletion increases cell sensitivity to ionizing irradiation. Therefore, our unbiased proteomic screen has revealed a novel activity of DYRK1A, expanding the complex role of this kinase in controlling cell homeostasis.
Pabis,2019 (30892606) Pabis M, Corsini L, Vincendeau M, Tripsianes K, Gibson TJ, Brack-Werner R, Sattler M "Modulation of HIV-1 gene expression by binding of a ULM motif in the Rev protein to UHM-containing splicing factors." Nucleic Acids Res 2019 Mar 20
The HIV-1 protein Rev is essential for virus replication and ensures the expression of partially spliced and unspliced transcripts. We identified a ULM (UHM ligand motif) motif in the Arginine-Rich Motif (ARM) of the Rev protein. ULMs (UHM ligand motif) mediate protein interactions during spliceosome assembly by binding to UHM (U2AF homology motifs) domains. Using NMR, biophysical methods and crystallography we show that the Rev ULM binds to the UHMs of U2AF65 and SPF45. The highly conserved Trp45 in the Rev ULM is crucial for UHM binding in vitro, for Rev co-precipitation with U2AF65 in human cells and for proper processing of HIV transcripts. Thus, Rev-ULM interactions with UHM splicing factors contribute to the regulation of HIV-1 transcript processing, also at the splicing level. The Rev ULM is an example of viral mimicry of host short linear motifs that enables the virus to interfere with the host molecular machinery.
Yeshaw,2019 (30741634) Yeshaw WM, van der Zwaag M, Pinto F, Lahaye LL, Faber AI, Gomez-Sanchez R, Dolga AM, Poland C, Monaco AP, van IJzendoorn SC, Grzeschik NA, Velayos-Baeza A, Sibon OC "Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility." Elife 2019 Feb 11
The VPS13A gene is associated with the neurodegenerative disorder Chorea Acanthocytosis. It is unknown what the consequences are of impaired function of VPS13A at the subcellular level. We demonstrate that VPS13A is a peripheral membrane protein, associated with mitochondria, the endoplasmic reticulum and lipid droplets. VPS13A is localized at sites where the endoplasmic reticulum and mitochondria are in close contact. VPS13A interacts with the ER residing protein VAP-A via its FFAT domain. Interaction with mitochondria is mediated via its C-terminal domain. In VPS13A-depleted cells, ER-mitochondria contact sites are decreased, mitochondria are fragmented and mitophagy is decreased. VPS13A also localizes to lipid droplets and affects lipid droplet motility. In VPS13A-depleted mammalian cells lipid droplet numbers are increased. Our data, together with recently published data from others, indicate that VPS13A is required for establishing membrane contact sites between various organelles to enable lipid transfer required for mitochondria and lipid droplet related processes.
Pool,2018 (30143803) Pool MR, Russo I "The perplexing PEXEL protein secretory pathway." Nat Microbiol 2018 Sep
None
White,2018 (30078701) White MW, Suvorova ES "Apicomplexa Cell Cycles: Something Old, Borrowed, Lost, and New." Trends Parasitol 2018 Sep
Increased parasite burden is linked to the severity of clinical disease caused by Apicomplexa parasites such as Toxoplasma gondii, Plasmodium spp, and Cryptosporidium. Pathogenesis of apicomplexan infections is greatly affected by the growth rate of the parasite asexual stages. This review discusses recent advances in deciphering the mitotic structures and cell cycle regulatory factors required by Apicomplexa parasites to replicate. As the molecular details become clearer, it is evident that the highly unconventional cell cycles of these parasites is a blending of many ancient and borrowed elements, which were then adapted to enable apicomplexan proliferation in a wide variety of different animal hosts.
Kirmiz,2018 (30012696) Kirmiz M, Vierra NC, Palacio S, Trimmer JS "Identification of VAPA and VAPB as Kv2 Channel-Interacting Proteins Defining Endoplasmic Reticulum-Plasma Membrane Junctions in Mammalian Brain Neurons." J Neurosci 2018 Aug 29
Membrane contacts between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are ubiquitous in eukaryotic cells and are platforms for lipid and calcium signaling and homeostasis. Recent studies have revealed proteins crucial to the formation and function of ER-PM junctions in non-neuronal cells, but little is known of the ER-PM junctions prominent in aspiny regions of mammalian brain neurons. The Kv2.1 voltage-gated potassium channel is abundantly clustered at ER-PM junctions in brain neurons and is the first PM protein that functions to organize ER-PM junctions. However, the molecular mechanism whereby Kv2.1 localizes to and remodels these junctions is unknown. We used affinity immunopurification and mass spectrometry-based proteomics on brain samples from male and female WT and Kv2.1 KO mice and identified the resident ER vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as prominent Kv2.1-associated proteins. Coexpression with Kv2.1 or its paralog Kv2.2 was sufficient to recruit VAPs to ER-PM junctions. Multiplex immunolabeling revealed colocalization of Kv2.1 and Kv2.2 with endogenous VAPs at ER-PM junctions in brain neurons from male and female mice in situ and in cultured rat hippocampal neurons, and KO of VAPA in mammalian cells reduces Kv2.1 clustering. The association of VAPA with Kv2.1 relies on a "two phenylalanines in an acidic tract" (FFAT) binding domain on VAPA and a noncanonical phosphorylation-dependent FFAT motif comprising the Kv2-specific clustering or PRC motif. These results suggest that Kv2.1 localizes to and organizes neuronal ER-PM junctions through an interaction with VAPs.SIGNIFICANCE STATEMENT Our study identified the endoplasmic reticulum (ER) proteins vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as proteins copurifying with the plasma membrane (PM) Kv2.1 ion channel. We found that expression of Kv2.1 recruits VAPs to ER-PM junctions, specialized membrane contact sites crucial to distinct aspects of cell function. We found endogenous VAPs at Kv2.1-mediated ER-PM junctions in brain neurons and other mammalian cells and that knocking out VAPA expression disrupts Kv2.1 clustering. We identified domains of VAPs and Kv2.1 necessary and sufficient for their association at ER-PM junctions. Our study suggests that Kv2.1 expression in the PM can affect ER-PM junctions via its phosphorylation-dependent association to ER-localized VAPA and VAPB.
Di Mattia,2018 (29858488) Di Mattia T, Wilhelm LP, Ikhlef S, Wendling C, Spehner D, Nomine Y, Giordano F, Mathelin C, Drin G, Tomasetto C, Alpy F "Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites." EMBO Rep 2018 Jul
Membrane contact sites are cellular structures that mediate interorganelle exchange and communication. The two major tether proteins of the endoplasmic reticulum (ER), VAP-A and VAP-B, interact with proteins from other organelles that possess a small VAP-interacting motif, named FFAT [two phenylalanines (FF) in an acidic track (AT)]. In this study, using an unbiased proteomic approach, we identify a novel ER tether named motile sperm domain-containing protein 2 (MOSPD2). We show that MOSPD2 possesses a Major Sperm Protein (MSP) domain which binds FFAT motifs and consequently allows membrane tethering in vitro MOSPD2 is an ER-anchored protein, and it interacts with several FFAT-containing tether proteins from endosomes, mitochondria, or Golgi. Consequently, MOSPD2 and these organelle-bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi. Thus, we characterized here MOSPD2, a novel tethering component related to VAP proteins, bridging the ER with a variety of distinct organelles.
Zhao,2018 (29628370) Zhao YG, Liu N, Miao G, Chen Y, Zhao H, Zhang H "The ER Contact Proteins VAPA/B Interact with Multiple Autophagy Proteins to Modulate Autophagosome Biogenesis." Curr Biol 2018 Apr 23
The endoplasmic reticulum (ER) is the site of biogenesis of the isolation membrane (IM, autophagosome precursor) and forms extensive contacts with IMs during their expansion into double-membrane autophagosomes. Little is known about the molecular mechanism underlying the formation and/or maintenance of the ER/IM contact. The integral ER proteins VAPA and VAPB (VAPs) participate in establishing ER contacts with multiple membranes by interacting with different tethers. Here, we demonstrate that VAPs also modulate ER/IM contact formation. Depletion of VAPs impairs progression of IMs into autophagosomes. Upon autophagy induction, VAPs are recruited to autophagosome formation sites on the ER, a process mediated by their interactions with FIP200 and PI(3)P. VAPs directly interact with FIP200 and ULK1 through their conserved FFAT motifs and stabilize the ULK1/FIP200 complex at the autophagosome formation sites on the ER. The formation of ULK1 puncta is significantly reduced by VAPA/B depletion. VAPs also interact with WIPI2 and enhance the formation of the WIPI2/FIP200 ER/IM tethering complex. Depletion of VMP1, which increases the ER/IM contact, greatly elevates the interaction of VAPs with these autophagy proteins. The VAPB P56S mutation, which is associated with amyotrophic lateral sclerosis, reduces the ULK1/FIP200 interaction and impairs autophagy at an early step, similar to the effect seen in VAPA/B-depleted cells. Our study reveals that VAPs directly interact with multiple ATG proteins, thereby contributing to ER/IM contact formation for autophagosome biogenesis.
Pathak,2018 (29619369) Pathak M, Kaira BG, Slater A, Emsley J "Cell Receptor and Cofactor Interactions of the Contact Activation System and Factor XI." Front Med (Lausanne) 2018
The contact activation system (CAS) or contact pathway is central to the crosstalk between coagulation and inflammation and contributes to diverse disorders affecting the cardiovascular system. CAS initiation contributes to thrombosis but is not required for hemostasis and can trigger plasma coagulation via the intrinsic pathway [through factor XI (FXI)] and inflammation via bradykinin release. Activation of factor XII (FXII) is the principal starting point for the cascade of proteolytic cleavages involving FXI, prekallikrein (PK), and cofactor high molecular weight kininogen (HK) but the precise location and cell receptor interactions controlling these reactions remains unclear. FXII, PK, FXI, and HK utilize key protein domains to mediate binding interactions to cognate cell receptors and diverse ligands, which regulates protease activation. The assembly of contact factors has been demonstrated on the cell membranes of a variety of cell types and microorganisms. The cooperation between the contact factors and endothelial cells, platelets, and leukocytes contributes to pathways driving thrombosis yet the basis of these interactions and the relationship with activation of the contact factors remains undefined. This review focuses on cell receptor interactions of contact proteins and FXI to develop a cell-based model for the regulation of contact activation.
Dosemeci,2017 (29284046) Dosemeci A, Burch A, Loo H, Toy D, Tao-Cheng JH "IRSp53 accumulates at the postsynaptic density under excitatory conditions." PLoS One 2017
IRSp53 (BAIAP2) is an abundant protein at the postsynaptic density (PSD) that binds to major PSD scaffolds, PSD-95 and Shanks, as well as to F-actin. The distribution of IRSp53 at the PSD in cultured hippocampal neurons was examined under basal and excitatory conditions by immuno-electron microscopy. Under basal conditions, label for IRSp53 is concentrated at the PSD. Upon depolarization by application of a medium containing 90 mM K+, the intensity of IRSp53 label at the PSD increased by 36+/-7%. Application of NMDA (50 muM) yielded 53+/-1% increase in the intensity of IRSp53 label at the PSD compared to controls treated with APV, an NMDA antagonist. The accumulation of IRSp53 label upon application of high K+ or NMDA was prominent at the deeper region of the PSD (the PSD pallium, lying 40-120 nm from the postsynaptic plasma membrane). IRSp53 molecules that accumulate at the distal region of the PSD pallium under excitatory conditions are too far from the plasma membrane to fulfill the generally recognized role of the protein as an effector of membrane-bound small GTPases. Instead, these IRSp53 molecules may have a structural role organizing the Shank scaffold and/or linking the PSD to the actin cytoskeleton.
Mohammed,2018 (29223926) Mohammed BM, Matafonov A, Ivanov I, Sun MF, Cheng Q, Dickeson SK, Li C, Sun D, Verhamme IM, Emsley J, Gailani D "An update on factor XI structure and function." Thromb Res 2018 Jan
Factor XI (FXI) is the zymogen of a plasma protease, factor XIa (FXIa), that contributes to thrombin generation during blood coagulation by proteolytic activation of several coagulation factors, most notably factor IX (FIX). FXI is a homolog of prekallikrein (PK), a component of the plasma kallikrein-kinin system. While sharing structural and functional features with PK, FXI has undergone adaptive changes that allow it to contribute to blood coagulation. Here we review current understanding of the biology and enzymology of FXI, with an emphasis on structural features of the protein as they relate to protease function.
Yadav,2018 (29180517) Yadav S, Thakur R, Georgiev P, Deivasigamani S, Krishnan H, Ratnaparkhi G, Raghu P "RDGBalpha localization and function at membrane contact sites is regulated by FFAT-VAP interactions." J Cell Sci 2018 Jan 08
Phosphatidylinositol transfer proteins (PITPs) are essential regulators of PLC signalling. The PI transfer domain (PITPd) of multi-domain PITPs is reported to be sufficient for in vivo function, questioning the relevance of other domains in the protein. In Drosophila photoreceptors, loss of RDGBalpha, a multi-domain PITP localized to membrane contact sites (MCSs), results in multiple defects during PLC signalling. Here, we report that the PITPd of RDGBalpha does not localize to MCSs and fails to support function during strong PLC stimulation. We show that the MCS localization of RDGBalpha depends on the interaction of its FFAT motif with dVAP-A. Disruption of the FFAT motif (RDGB(FF/AA)) or downregulation of dVAP-A, both result in mis-localization of RDGBalpha and are associated with loss of function. Importantly, the ability of the PITPd in full-length RDGB(FF/AA) to rescue mutant phenotypes was significantly worse than that of the PITPd alone, indicating that an intact FFAT motif is necessary for PITPd activity in vivo Thus, the interaction between the FFAT motif and dVAP-A confers not only localization but also intramolecular regulation on lipid transfer by the PITPd of RDGBalpha. This article has an associated First Person interview with the first author of the paper.
Kumar,2018 (29155505) Kumar V, Kaur J, Singh AP, Singh V, Bisht A, Panda JJ, Mishra PC, Hora R "PHISTc protein family members localize to different subcellular organelles and bind Plasmodium falciparum major virulence factor PfEMP-1." FEBS J 2018 Jan
Plasmodium falciparum encodes a novel repertoire of the Plasmodium helical interspersed subtelomeric (PHIST) family of exported proteins, which play diverse roles in infected red blood cells, contributing to malaria pathogenesis. PHIST proteins are central to parasite biology and modify human erythrocytes by interacting with parasite and host proteins. Here, we have attempted to understand the localization and function of two unexplored proteins of the PHISTc subfamily, PFD1140w and PF11_0503, and compared these with a well-characterized member, PFI1780w. We demonstrate that Phist domains assume different oligomeric states owing to a distinct array of subunit interface residues. Colocalization of a Maurer's cleft signature protein, P. falciparum skeleton-binding protein-1 (PfSBP-1), and P. falciparum erythrocyte membrane protein-1 (PfEMP-1) revealed different subcellular destinations for these PHIST members. We further show the binding of recombinant PHIST proteins to the cytoplasmic tail of PfEMP-1 and a novel interaction with PfSBP-1. Interestingly, PFD1140w interacts with PfEMP-1 and PfSBP-1 simultaneously in vitro leading to formation of a complex. These two distant PHISTc members also bind PfEMP-1 on distinct sites, despite sharing the Phist domain. Our data re-emphasize a supportive role for PHIST proteins in cytoadhesion, and identify a new binding partner, PfSBP-1, for members of this family. This information therefore adds another chapter to the understanding of P. falciparum biology and highlights the significance of the unexplored PHIST family.
Stanhope,2017 (29078338) Stanhope R, Flora E, Bayne C, Derre I "IncV, a FFAT motif-containing Chlamydia protein, tethers the endoplasmic reticulum to the pathogen-containing vacuole." Proc Natl Acad Sci U S A 2017 Nov 7
Membrane contact sites (MCS) are zones of contact between the membranes of two organelles. At MCS, specific proteins tether the organelles in close proximity and mediate the nonvesicular trafficking of lipids and ions between the two organelles. The endoplasmic reticulum (ER) integral membrane protein VAP is a common component of MCS involved in both tethering and lipid transfer by binding directly to proteins containing a FFAT [two phenylalanines (FF) in an acidic tract (AT)] motif. In addition to maintaining cell homeostasis, MCS formation recently emerged as a mechanism by which intracellular pathogens hijack cellular resources and establish their replication niche. Here, we investigated the mechanism by which the Chlamydia-containing vacuole, termed the inclusion, establishes direct contact with the ER. We show that the Chlamydia protein IncV, which is inserted into the inclusion membrane, displays one canonical and one noncanonical FFAT motif that cooperatively mediated the interaction of IncV with VAP. IncV overexpression was sufficient to bring the ER in close proximity of IncV-containing membranes. Although IncV deletion partially decreased VAP association with the inclusion, it did not suppress the formation of ER-inclusion MCS, suggesting the existence of redundant mechanisms in MCS formation. We propose a model in which IncV acts as one of the primary tethers that contribute to the formation of ER-inclusion MCS. Our results highlight a previously unidentified mechanism of bacterial pathogenesis and support the notion that cooperation of two FFAT motifs may be a common feature of VAP-mediated MCS formation. Chlamydia-host cell interaction therefore constitutes a unique system to decipher the molecular mechanisms underlying MCS formation.
Schmoker,2017 (29025973) Schmoker AM, Weinert JL, Kellett KJ, Johnson HE, Joy RM, Weir ME, Ebert AM, Ballif BA "Dynamic multi-site phosphorylation by Fyn and Abl drives the interaction between CRKL and the novel scaffolding receptors DCBLD1 and DCBLD2." Biochem J 2017 Nov 21
Discoidin, CUB, and LCCL domain containing 2 (DCBLD2) is a neuropilin-like transmembrane scaffolding receptor with known and anticipated roles in vascular remodeling and neuronal positioning. DCBLD2 is also up-regulated in several cancers and can drive glioblastomas downstream of activated epidermal growth factor receptor. While a few studies have shown either a positive or negative role for DCBLD2 in regulating growth factor receptor signaling, little is known about the conserved signaling features of DCBLD family members that drive their molecular activities. We previously identified DCBLD2 tyrosine phosphorylation sites in intracellular YxxP motifs that are required for the phosphorylation-dependent binding of the signaling adaptors CRK and CRKL (CT10 regulator of kinase and CRK-like). These intracellular YxxP motifs are highly conserved across vertebrates and between DCBLD family members. Here, we demonstrate that, as for DCBLD2, DCBLD1 YxxP motifs are required for CRKL-SH2 (Src homology 2) binding. We report that Src family kinases (SFKs) and Abl differentially promote the interaction between the CRKL-SH2 domain and DCBLD1 and DCBLD2, and while SFKs and Abl each promote DCBLD1 and DCBLD2 binding to the CRKL-SH2 domain, the effect of Abl is more pronounced for DCBLD1. Using high-performance liquid chromatography coupled with tandem mass spectrometry, we quantified phosphorylation at several YxxP sites in DCBLD1 and DCBLD2, mapping site-specific preferences for SFKs and Abl. Together, these data provide a platform to decipher the signaling mechanisms by which these novel receptors drive their biological activities.
McCune,2017 (28698274) McCune BT, Tang W, Lu J, Eaglesham JB, Thorne L, Mayer AE, Condiff E, Nice TJ, Goodfellow I, Krezel AM, Virgin HW "Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine-Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2." MBio 2017 Jul 11
The Norovirus genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored. Here we report decreased murine norovirus replication in VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA was required for the efficiency of a step(s) in the viral replication cycle after entry of viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The interaction of VAPA with viral NS1/2 proteins is conserved between murine and human noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein (MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted interaction with VAPA inhibited viral replication. Structural analysis revealed that the viral NS1 domain contains a mimic of the phenylalanine-phenylalanine-acidic-tract (FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region of the NS1 domain that are important for viral replication are highly conserved across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that functionally mimics host FFAT motifs is important for murine norovirus replication.IMPORTANCE Human noroviruses are a leading cause of gastroenteritis worldwide, but host factors involved in norovirus replication are incompletely understood. Murine noroviruses have been studied to define mechanisms of norovirus replication. Here we defined the importance of the interaction between the hitherto poorly studied NS1/2 norovirus protein and the VAPA host protein. The NS1/2-VAPA interaction is conserved between murine and human noroviruses and was important for early steps in murine norovirus replication. Using structure-function analysis, we found that NS1/2 contains a short sequence that molecularly mimics the FFAT motif that is found in multiple host proteins that bind VAPA. This represents to our knowledge the first example of functionally important mimicry of a host FFAT motif by a microbial protein.
Miyazaki,2017 (28497540) Miyazaki S, Kim J, Yamagishi Y, Ishiguro T, Okada Y, Tanno Y, Sakuno T, Watanabe Y "Meikin-associated polo-like kinase specifies Bub1 distribution in meiosis I." Genes Cells 2017 Jun
In meiosis I, sister chromatids are captured by microtubules emanating from the same pole (mono-orientation), and centromeric cohesion is protected throughout anaphase. Shugoshin, which is localized to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, meikin, may regulate cohesion protection, although the underlying molecular mechanisms remain elusive. Here, we show that fission yeast Moa1 (meikin), which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1) to accumulate Bub1. Consequently, in contrast to the transient kinetochore localization of mitotic Bub1, meiotic Bub1 persists at kinetochores until anaphase I. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Furthermore, molecular genetic analyses show a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin that is important for establishing meiosis-specific chromosome segregation. We provide evidence that the meiosis-specific Bub1 regulation is conserved in mouse.
Bays,2017 (28401269) Bays JL, DeMali KA "Vinculin in cell-cell and cell-matrix adhesions." Cell Mol Life Sci 2017 Apr 12
Vinculin was identified as a component of focal adhesions and adherens junctions nearly 40 years ago. Since that time, remarkable progress has been made in understanding its activation, regulation and function. Here we discuss the current understanding of the roles of vinculin in cell-cell and cell-matrix adhesions. Emphasis is placed on the how vinculin is recruited, activated and regulated. We also highlight the recent understanding of how vinculin responds to and transmits force at integrin- and cadherin-containing adhesion complexes to the cytoskeleton. Furthermore, we discuss roles of vinculin in binding to and rearranging the actin cytoskeleton.
Siton-Mendelson,2017 (28372857) Siton-Mendelson O, Bernheim-Groswasser A "Functional Actin Networks under Construction: The Cooperative Action of Actin Nucleation and Elongation Factors." Trends Biochem Sci 2017 Jun
Cells require actin nucleation factors to catalyze the formation of actin networks and elongation factors to control the rate and extent of actin polymerization. Earlier models suggested that the different factors assemble actin networks independently. However, recent evidence indicates that the assembly of most cellular networks involves multiple nucleation and elongation factors that work in concert. Here, we describe how these different factors cooperate, directly or indirectly, to promote the assembly of functional actin network in cells, both in the cytoplasm and nucleoplasm. We show that, in many cases, multiple factors collaborate to initiate network assembly and growth. The selection of specific sets of key players enables the cells to fine-tune network structure and dynamics, optimizing them for particular cellular functions.
Liu,2017 (28235034) Liu H, Wang K, Chen S, Sun Q, Zhang Y, Chen L, Sun X "NFATc1 phosphorylation by DYRK1A increases its protein stability." PLoS One 2017
NFATs are transcription factors involved in immune activation and tumor progression. Previous reports showed that DYRK1A suppressed NFATc2 transcriptional activity through phosphorylation. Nonetheless, our results showed that DYRK1A increased NFATc1/alphaA protein level and subsequent transcriptional activity. DYRK1A phosphorylation of NFATc1/alphaA at S261, S278, S403 and S409 interfered with NFATc1 ubiquitination and ubiquitin-proteasome degradation. Our results imply that DYRK1A is a positive kinase in regulation of NFATc1.
Zhao,2017 (28075396) Zhao L, Washington MT "Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases." Genes (Basel) 2017 Jan 10
DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1) template switching and recombination-dependent DNA synthesis; and (2) translesion synthesis (TLS) using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.
Blanc,2017 (28061334) Blanc RS, Richard S "Arginine Methylation: The Coming of Age." Mol Cell 2017 Jan 5
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells.
Davey,2017 (28002650) Davey NE, Seo MH, Yadav VK, Jeon J, Nim S, Krystkowiak I, Blikstad C, Dong D, Markova N, Kim PM, Ivarsson Y "Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome." FEBS J 2017 Feb
The intrinsically disordered regions of eukaryotic proteomes are enriched in short linear motifs (SLiMs), which are of crucial relevance for cellular signaling and protein regulation; many mediate interactions by providing binding sites for peptide-binding domains. The vast majority of SLiMs remain to be discovered highlighting the need for experimental methods for their large-scale identification. We present a novel proteomic peptide phage display (ProP-PD) library that displays peptides representing the disordered regions of the human proteome, allowing direct large-scale interrogation of most potential binding SLiMs in the proteome. The performance of the ProP-PD library was validated through selections against SLiM-binding bait domains with distinct folds and binding preferences. The vast majority of identified binding peptides contained sequences that matched the known SLiM-binding specificities of the bait proteins. For SHANK1 PDZ, we establish a novel consensus TxF motif for its non-C-terminal ligands. The binding peptides mostly represented novel target proteins, however, several previously validated protein-protein interactions (PPIs) were also discovered. We determined the affinities between the VHS domain of GGA1 and three identified ligands to 40-130 mum through isothermal titration calorimetry, and confirmed interactions through coimmunoprecipitation using full-length proteins. Taken together, we outline a general pipeline for the design and construction of ProP-PD libraries and the analysis of ProP-PD-derived, SLiM-based PPIs. We demonstrated the methods potential to identify low affinity motif-mediated interactions for modular domains with distinct binding preferences. The approach is a highly useful complement to the current toolbox of methods for PPI discovery.
Wang,2016 (27998540) Wang X, Bajaj R, Bollen M, Peti W, Page R "Expanding the PP2A Interactome by Defining a B56-Specific SLiM." Structure 2016 Dec 6
Specific interactions between proteins govern essential physiological processes including signaling. Many enzymes, especially the family of serine/threonine phosphatases (PSPs: PP1, PP2A, and PP2B/calcineurin/CN), recruit substrates and regulatory proteins by binding short linear motifs (SLiMs), short sequences found within intrinsically disordered regions that mediate specific protein-protein interactions. While tremendous progress had been made in identifying where and how SLiMs bind PSPs, especially PP1 and CN, essentially nothing is known about how SLiMs bind PP2A, a validated cancer drug target. Here we describe three structures of a PP2A-SLiM interaction (B56:pS-RepoMan, B56:pS-BubR1, and B56:pSpS-BubR1), show that this PP2A-specific SLiM is defined as LSPIxE, and then use these data to discover scores of likely PP2A regulators and substrates. Together, these data provide a powerful approach not only for dissecting PP2A interaction networks in cells but also for targeting PP2A diseases, such as cancer.
Inaba,2017 (27927989) Inaba S, Numoto N, Ogawa S, Morii H, Ikura T, Abe R, Ito N, Oda M "Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins." J Biol Chem 2017 Jan 20
Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases.
Arquint,2016 (27911707) Arquint C, Nigg EA "The PLK4-STIL-SAS-6 module at the core of centriole duplication." Biochem Soc Trans 2016 Dec 02
Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.
Pellegrini,2016 (27889209) Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA "Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist." Structure 2016 Nov 27
The causative agent of toxoplasmosis, the intracellular parasite Toxoplasma gondii, delivers a protein, GRA24, into the cells it infects that interacts with the mitogen-activated protein (MAP) kinase p38alpha (MAPK14), leading to activation and nuclear translocation of the host kinase and a subsequent inflammatory response that controls the progress of the parasite. The purification of a recombinant complex of GRA24 and human p38alpha has allowed the molecular basis of this activation to be determined. GRA24 is shown to be intrinsically disordered, binding two kinases that act independently, and is the only factor required to bypass the canonical mitogen-activated protein kinase activation pathway. An adapted kinase interaction motif (KIM) forms a highly stable complex that competes with cytoplasmic regulatory partners. In addition, the recombinant complex forms a powerful in vitro tool to evaluate the specificity and effectiveness of p38alpha inhibitors that have advanced to clinical trials, as it provides a hitherto unavailable stable and highly active form of p38alpha.
Loerch,2016 (27852923) Loerch S, Kielkopf CL "Unmasking the U2AF homology motif family: a bona fide protein-protein interaction motif in disguise." RNA 2016 Dec
U2AF homology motifs (UHM) that recognize U2AF ligand motifs (ULM) are an emerging family of protein-protein interaction modules. UHM-ULM interactions recur in pre-mRNA splicing factors including U2AF1 and SF3b1, which are frequently mutated in myelodysplastic syndromes. The core topology of the UHM resembles an RNA recognition motif and is often mistakenly classified within this large family. Here, we unmask the charade and review recent discoveries of UHM-ULM modules for protein-protein interactions. Diverse polypeptide extensions and selective phosphorylation of UHM and ULM family members offer new molecular mechanisms for the assembly of specific partners in the early-stage spliceosome.
Oi,2017 (27840050) Oi A, Katayama S, Hatano N, Sugiyama Y, Kameshita I, Sueyoshi N "Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)." Biochem Biophys Res Commun 2017 Jan 08
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization.
Dankert,2016 (27773672) Dankert JF, Rona G, Clijsters L, Geter P, Skaar JR, Bermudez-Hernandez K, Sassani E, Fenyo D, Ueberheide B, Schneider R, Pagano M "Cyclin F-Mediated Degradation of SLBP Limits H2A.X Accumulation and Apoptosis upon Genotoxic Stress in G2." Mol Cell 2016 Nov 03
SLBP (stem-loop binding protein) is a highly conserved factor necessary for the processing, translation, and degradation of H2AFX and canonical histone mRNAs. We identified the F-box protein cyclin F, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the G2 ubiquitin ligase for SLBP. SLBP interacts with cyclin F via an atypical CY motif, and mutation of this motif prevents SLBP degradation in G2. Expression of an SLBP stable mutant results in increased loading of H2AFX mRNA onto polyribosomes, resulting in increased expression of H2A.X (encoded by H2AFX). Upon genotoxic stress in G2, high levels of H2A.X lead to persistent gammaH2A.X signaling, high levels of H2A.X phosphorylated on Tyr142, high levels of p53, and induction of apoptosis. We propose that cyclin F co-evolved with the appearance of stem-loops in vertebrate H2AFX mRNA to mediate SLBP degradation, thereby limiting H2A.X synthesis and cell death upon genotoxic stress.
Davey,2016 (27716480) Davey NE, Morgan DO "Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex." Mol Cell 2016 Oct 07
The anaphase-promoting complex or cyclosome (APC/C) is a ubiquitin ligase that polyubiquitinates specific substrates at precise times in the cell cycle, thereby triggering the events of late mitosis in a strict order. The robust substrate specificity of the APC/C prevents the potentially deleterious degradation of non-APC/C substrates and also averts the cell-cycle errors and genomic instability that could result from mistimed degradation of APC/C targets. The APC/C recognizes short linear sequence motifs, or degrons, on its substrates. The specific and timely modification and degradation of APC/C substrates is likely to be modulated by variations in degron sequence and context. We discuss the extensive affinity, specificity, and selectivity determinants encoded in APC/C degrons, and we describe some of the extrinsic mechanisms that control APC/C-substrate recognition. As an archetype for protein motif-driven regulation of cell function, the APC/C-substrate interaction provides insights into the general properties of post-translational regulatory systems.
Reusswig,2016 (27705801) Reusswig KU, Zimmermann F, Galanti L, Pfander B "Robust Replication Control Is Generated by Temporal Gaps between Licensing and Firing Phases and Depends on Degradation of Firing Factor Sld2." Cell Rep 2016 Oct 4
Temporal separation of DNA replication initiation into licensing and firing phases ensures the precise duplication of the genome during each cell cycle. Cyclin-dependent kinase (CDK) is known to generate this separation by activating firing factors and at the same time inhibiting licensing factors but may not be sufficient to ensure robust separation at transitions between both phases. Here, we show that a temporal gap separates the inactivation of firing factors from the re-activation of licensing factors during mitosis in budding yeast. We find that gap size critically depends on phosphorylation-dependent degradation of the firing factor Sld2 mediated by CDK, DDK, Mck1, and Cdc5 kinases and the ubiquitin-ligases Dma1/2. Stable mutants of Sld2 minimize the gap and cause increased genome instability in an origin-dependent manner when combined with deregulation of other replication regulators or checkpoint mechanisms. Robust separation of licensing and firing phases therefore appears indispensable to safeguard genome stability.
Shigeno-Nakazawa,2016 (27686861) Shigeno-Nakazawa Y, Kasai T, Ki S, Kostyanovskaya E, Pawlak J, Yamagishi J, Okimoto N, Taiji M, Okada M, Westbrook J, Satta Y, Kigawa T, Imamoto A "A pre-metazoan origin of the CRK gene family and co-opted signaling network." Sci Rep 2016 Sep 30
CRK and CRKL adapter proteins play essential roles in development and cancer through their SRC homology 2 and 3 (SH2 and SH3) domains. To gain insight into the origin of their shared functions, we have investigated their evolutionary history. We propose a term, crk/crkl ancestral (crka), for orthologs in invertebrates before the divergence of CRK and CRKL in the vertebrate ancestor. We have isolated two orthologs expressed in the choanoflagellate Monosiga brevicollis, a unicellular relative to the metazoans. Consistent with its highly-conserved three-dimensional structure, the SH2 domain of M. brevicollis crka1 can bind to the mammalian CRK/CRKL SH2 binding consensus phospho-YxxP, and to the SRC substrate/focal adhesion protein BCAR1 (p130(CAS)) in the presence of activated SRC. These results demonstrate an ancient origin of the CRK/CRKL SH2-target recognition specificity. Although BCAR1 orthologs exist only in metazoans as identified by an N-terminal SH3 domain, YxxP motifs, and a C-terminal FAT-like domain, some pre-metazoan transmembrane proteins include several YxxP repeats in their cytosolic region, suggesting that they are remotely related to the BCAR1 substrate domain. Since the tyrosine kinase SRC also has a pre-metazoan origin, co-option of BCAR1-related sequences may have rewired the crka-dependent network to mediate adhesion signals in the metazoan ancestor.
Nguyen,2016 (27579998) Nguyen PK, Neofytou E, Rhee JW, Wu JC "Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease: A Review." JAMA Cardiol 2016 Aug 31
Importance: Although progress continues to be made in the field of stem cell regenerative medicine for the treatment of cardiovascular disease, significant barriers to clinical implementation still exist. Objectives: To summarize the current barriers to the clinical implementation of stem cell therapy in patients with cardiovascular disease and to discuss potential strategies to overcome them. Evidence Review: Information for this review was obtained through a search of PubMed and the Cochrane database for English-language studies published between January 1, 2000, and July 25, 2016. Ten randomized clinical trials and 8 systematic reviews were included. Findings: One of the major clinical barriers facing the routine implementation of stem cell therapy in patients with cardiovascular disease is the limited and inconsistent benefit observed thus far. Reasons for this finding are unclear but may be owing to poor cell retention and survival, as suggested by numerous preclinical studies and a small number of human studies incorporating imaging to determine cell fate. Additional studies in humans using imaging to determine cell fate are needed to understand how these factors contribute to the limited efficacy of stem cell therapy. Treatment strategies to address poor cell retention and survival are under investigation and include the following: coadministration of immunosuppressive and prosurvival agents, delivery of cardioprotective factors packaged in exosomes rather than the cells themselves, and use of tissue-engineering strategies to provide structural support for cells. If larger grafts are achieved using these strategies, it will be imperative to carefully monitor for the potential risks of tumorigenicity, immunogenicity, and arrhythmogenicity. Conclusions and Relevance: Despite important achievements to date, stem cell therapy is not yet ready for routine clinical implementation. Significant research is still needed to address the clinical barriers outlined herein before the next wave of large clinical trials is under way.
Bengoechea-Alonso,2016 (27579997) Bengoechea-Alonso MT, Ericsson J "The phosphorylation-dependent regulation of nuclear SREBP1 during mitosis links lipid metabolism and cell growth." Cell Cycle 2016 Sep 28
The SREBP transcription factors are major regulators of lipid metabolism. Disturbances in lipid metabolism are at the core of several health issues facing modern society, including cardiovascular disease, obesity and diabetes. In addition, the role of lipid metabolism in cancer cell growth is receiving increased attention. Transcriptionally active SREBP molecules are unstable and rapidly degraded in a phosphorylation-dependent manner by Fbw7, a ubiquitin ligase that targets several cell cycle regulatory proteins for degradation. We have previously demonstrated that active SREBP1 is stabilized during mitosis. We have now delineated the mechanisms involved in the stabilization of SREBP1 in mitotic cells. This process is initiated by the phosphorylation of a specific serine residue in nuclear SREBP1 by the mitotic kinase Cdk1. The phosphorylation of this residue creates a docking site for a separate mitotic kinase, Plk1. Plk1 interacts with nuclear SREBP1 in mitotic cells and phosphorylates a number of residues in the C-terminal domain of the protein, including a threonine residue in close proximity of the Fbw7 docking site in SREBP1. The phosphorylation of these residues by Plk1 blocks the interaction between SREBP1 and Fbw7 and attenuates the Fbw7-dependent degradation of nuclear SREBP1 during cell division. Inactivation of SREBP1 results in a mitotic defect, suggesting that SREBP1 could regulate cell division. We propose that the mitotic phosphorylation and stabilization of nuclear SREBP1 during cell division provides a link between lipid metabolism and cell proliferation. Thus, the current study provides additional support for the emerging hypothesis that SREBP-dependent lipid metabolism may be important for cell growth.
Boehm,2016 (27539869) Boehm EM, Washington MT "R.I.P. to the PIP: PCNA-binding motif no longer considered specific: PIP motifs and other related sequences are not distinct entities and can bind multiple proteins involved in genome maintenance." Bioessays 2016 Nov
Many proteins responsible for genome maintenance interact with one another via short sequence motifs. The best known of these are PIP motifs, which mediate interactions with the replication protein PCNA. Others include RIR motifs, which bind the translesion synthesis protein Rev1, and MIP motifs, which bind the mismatch repair protein Mlh1. Although these motifs have similar consensus sequences, they have traditionally been viewed as separate motifs, each with their own target protein. In this article, we review several recent studies that challenge this view. Taken together, they imply that these different motifs are not distinct entities. Instead, there is a single, broader class of motifs, which we call "PIP-like" motifs, which have overlapping specificities and are capable of binding multiple target proteins. Given this, we must reassess the role of these motifs in forming the network of interacting proteins responsible for genome maintenance.
Hertz,2016 (27453045) Hertz EP, Kruse T, Davey NE, Lopez-Mendez B, Sigurethsson JO, Montoya G, Olsen JV, Nilsson J "A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase." Mol Cell 2016 Aug 20
Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes.
Rogers,2016 (27417119) Rogers S, McCloy R, Watkins DN, Burgess A "Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit." Bioessays 2016 Jul 15
Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during mammalian mitotic exit that cannot be fully explained by the loss of kinase activity. This suggests that specificity is determined in part by phosphatases. In this review, we explore how the physicochemical properties of an individual phosphosite and its surrounding amino acids can affect interactions with a phosphatase. These positive and negative interactions in turn help determine the specific pattern of dephosphorylation required for correct mitotic exit.
de Koning-Ward,2016 (27374802) de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR "Plasmodium species: master renovators of their host cells." Nat Rev Microbiol 2016 Aug
Plasmodium parasites, the causative agents of malaria, have developed elaborate strategies that they use to survive and thrive within different intracellular environments. During the blood stage of infection, the parasite is a master renovator of its erythrocyte host cell, and the changes in cell morphology and function that are induced by the parasite promote survival and contribute to the pathogenesis of severe malaria. In this Review, we discuss how Plasmodium parasites use the protein trafficking motif Plasmodium export element (PEXEL), protease-mediated polypeptide processing, a novel translocon termed the Plasmodium translocon of exported proteins (PTEX) and exomembranous structures to export hundreds of proteins to discrete subcellular locations in the host erythrocytes, which enables the parasite to gain access to vital nutrients and to evade the immune defence mechanisms of the host.
Wang,2016 (27350047) Wang J, Wang Z, Yu T, Yang H, Virshup DM, Kops GJ, Lee SH, Zhou W, Li X, Xu W, Rao Z "Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization." Protein Cell 2016 Jul 04
Protein phosphatase 2A (PP2A) accounts for the majority of total Ser/Thr phosphatase activities in most cell types and regulates many biological processes. PP2A holoenzymes contain a scaffold A subunit, a catalytic C subunit, and one of the regulatory/targeting B subunits. How the B subunit controls PP2A localization and substrate specificity, which is a crucial aspect of PP2A regulation, remains poorly understood. The kinetochore is a critical site for PP2A functioning, where PP2A orchestrates chromosome segregation through its interactions with BubR1. The PP2A-BubR1 interaction plays important roles in both spindle checkpoint silencing and stable microtubule-kinetochore attachment. Here we present the crystal structure of a PP2A B56-BubR1 complex, which demonstrates that a conserved BubR1 LxxIxE motif binds to the concave side of the B56 pseudo-HEAT repeats. The BubR1 motif binds to a groove formed between B56 HEAT repeats 3 and 4, which is quite distant from the B56 binding surface for PP2A catalytic C subunit and thus is unlikely to affect PP2A activity. In addition, the BubR1 binding site on B56 is far from the B56 binding site of shugoshin, another kinetochore PP2A-binding protein, and thus BubR1 and shugoshin can potentially interact with PP2A-B56 simultaneously. Our structural and biochemical analysis indicates that other proteins with the LxxIxE motif may also bind to the same PP2A B56 surface. Thus, our structure of the PP2A B56-BubR1 complex provides important insights into how the B56 subunit directs the recruitment of PP2A to specific targets.
Helmke,2016 (27325299) Helmke C, Raab M, Rodel F, Matthess Y, Oellerich T, Mandal R, Sanhaji M, Urlaub H, Rodel C, Becker S, Strebhardt K "Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8." Cell Res 2016 Aug 02
Upon interaction of the CD95 receptor with its ligand, sequential association of the adaptor molecule FADD (MORT1), pro-forms of caspases-8/10, and the caspase-8/10 regulator c-FLIP leads to the formation of a death-inducing signaling complex. Here, we identify polo-like kinase (Plk) 3 as a new interaction partner of the death receptor CD95. The enzymatic activity of Plk3 increases following interaction of the CD95 receptor with its ligand. Knockout (KO) or knockdown of caspase-8, CD95 or FADD prevents activation of Plk3 upon CD95 stimulation, suggesting a requirement of a functional DISC for Plk3 activation. Furthermore, we identify caspase-8 as a new substrate for Plk3. Phosphorylation occurs on T273 and results in stimulation of caspase-8 proapoptotic function. Stimulation of CD95 in cells expressing a non-phosphorylatable caspase-8-T273A mutant in a rescue experiment or in Plk3-KO cells generated by CRISPR/Cas9 reduces the processing of caspase-8 prominently. Low T273 phosphorylation correlates significantly with low Plk3 expression in a cohort of 95 anal tumor patients. Our data suggest a novel mechanism of kinase activation within the Plk family and propose a new model for the stimulation of the extrinsic death pathway in tumors with high Plk3 expression.
Zhao,2016 (27302953) Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P "Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins." Proc Natl Acad Sci U S A 2016 Jun 15
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-beta) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.
Zhu,2016 (27238966) Zhu K, Shan Z, Zhang L, Wen W "Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity." Structure 2016 Jul 08
In Drosophila neuroblasts (NBs), the asymmetrical localization and segregation of the cell-fate determinant Numb are regulated by its adaptor Partner of Numb (Pon) and the cell-cycle kinase Polo. Polo phosphorylates the Pon localization domain, thus leading to its basal distribution together with Numb, albeit through an unclear mechanism. Here, we find that Cdk1 phosphorylates Pon at Thr63, thus creating a docking site for the Polo-box domain (PBD) of Polo-like kinase 1 (Plk1). The crystal structure of the Plk1 PBD/phospho-Pon complex reveals that two phospho-Pon bound PBDs associate to form a dimer of dimers. We provide evidence that phospho-Pon binding-induced PBD dimerization relieves the autoinhibition of Plk1. Moreover, we demonstrate that the priming Cdk1 phosphorylation of Pon is important for sequential Plk1 phosphorylation. Our results not only provide structural insight into how phosphoprotein binding activates Plk1 but also suggest that binding to different phosphoproteins might mediate the fine-tuning of Plk1 activity.
Wei,2016 (27212118) Wei Y, Xu X "UFMylation: A Unique & Fashionable Modification for Life." Genomics Proteomics Bioinformatics 2016 Jun 04
Ubiquitin-fold modifier 1 (UFM1) is one of the newly-identified ubiquitin-like proteins. Similar to ubiquitin, UFM1 is conjugated to its target proteins by a three-step enzymatic reaction. The UFM1-activating enzyme, ubiquitin-like modifier-activating enzyme 5 (UBA5), serves as the E1 to activate UFM1; UFM1-conjugating enzyme 1 (UFC1) acts as the E2 to transfer the activated UFM1 to the active site of the E2; and the UFM1-specific ligase 1 (UFL1) acts as the E3 to recognize its substrate, transfer, and ligate the UFM1 from E2 to the substrate. This process is called ufmylation. UFM1 chains can be cleaved from its target proteins by UFM1-specific proteases (UfSPs), suggesting that the ufmylation modification is reversible. UFM1 cascade is conserved among nearly all of the eukaryotic organisms, but not in yeast, and associated with several cellular activities including the endoplasmic reticulum stress response and hematopoiesis. Furthermore, the UFM1 cascade is closely related to a series of human diseases. In this review, we summarize the molecular details of this reversible modification process, the recent progress of its functional studies, as well as its implication in tumorigenesis and potential therapeutic targets for cancer.
Sanchez-Barcelo,2016 (27121162) Sanchez-Barcelo EJ, Mediavilla MD, Vriend J, Reiter RJ "Constitutive photomorphogenesis protein 1 (COP1) and COP9 signalosome, evolutionarily conserved photomorphogenic proteins as possible targets of melatonin." J Pineal Res 2016 Jul 09
The ubiquitin proteasome system has been proposed as a possible mechanism involved in the multiple actions of melatonin. COP1 (constitutive photomorphogenesis protein 1), a RING finger-type ubiquitin E3 ligase formerly identified in Arabidopsis, is a central switch for the transition from plant growth underground in darkness (etiolation) to growth under light exposure (photomorphogenesis). In darkness, COP1 binds to photomorphogenic transcription factors driving its degradation via the 26S proteasome; blue light, detected by cryptochromes, and red and far-red light detected by phytochromes, negatively regulate COP1. Homologues of plant COP1 containing all the structural features present in Arabidopsis as well as E3 ubiquitin ligase activity have been identified in mice and humans. Substrates for mammalian (m) COP1 include p53, AP-1 and c-Jun, p27(Kip1), ETV1, MVP, 14-3-3sigma, C/EBPalpha, MTA1, PEA3, ACC, TORC2 and FOXO1. This mCOP1 target suggests functions related to tumorigenesis, gluconeogenesis, and lipid metabolism. The role of mCOP1 in tumorigenesis (either as a tumor promoter or tumor suppressor), as well as in glucose metabolism (inhibition of gluconeogenesis) and lipid metabolism (inhibition of fatty acid synthesis), has been previously demonstrated. COP1, along with numerous other ubiquitin ligases, is regulated by the COP9 signalosome; this protein complex is associated with the oxidative stress sensor Keap1 and the deubiquitinase USP15. The objective of this review was to provide new information on the possible role of COP1 and COP9 as melatonin targets. The hypothesis is based on common functional aspects of melatonin and COP1 and COP9, including their dependence on light, regulation of the metabolism, and their control of tumor growth.
Hesbacher,2016 (27121059) Hesbacher S, Pfitzer L, Wiedorfer K, Angermeyer S, Borst A, Haferkamp S, Scholz CJ, Wobser M, Schrama D, Houben R "RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells." Oncotarget 2016 Apr 28
The pocket protein (PP) family consists of the three members RB1, p107 and p130 all possessing tumor suppressive properties. Indeed, the PPs jointly control the G1/S transition mainly by inhibiting E2F transcription factors. Notably, several viral oncoproteins are capable of binding and inhibiting PPs. Merkel cell polyomavirus (MCPyV) is considered as etiological factor for Merkel cell carcinoma (MCC) with expression of the viral Large T antigen (LT) harboring an intact PP binding domain being required for proliferation of most MCC cells. Therefore, we analyzed the interaction of MCPyV-LT with the PPs. Co-IP experiments indicate that MCPyV-LT binds potently only to RB1. Moreover, MCPyV-LT knockdown-induced growth arrest in MCC cells can be rescued by knockdown of RB1, but not by p107 or p130 knockdown. Accordingly, cell cycle arrest and E2F target gene repression mediated by the single PPs can only in the case of RB1 be significantly reverted by MCPyV-LT expression. Moreover, data from an MCC patient indicate that loss of RB1 rendered the MCPyV-positive MCC cells LT independent. Thus, our results suggest that RB1 is the dominant tumor suppressor PP in MCC, and that inactivation of RB1 by MCPyV-LT is largely sufficient for its growth supporting function in established MCPyV-positive MCC cells.
Senda,2016 (27116701) Senda Y, Murata-Kamiya N, Hatakeyama M "C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility." Cancer Sci 2016 Jul 16
Pragmin is one of the few mammalian proteins containing the Glu-Pro-Ile-Tyr-Ala (EPIYA) tyrosine-phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain-containing mammalian proteins such as the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) and the C-terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine-phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine-238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin-Csk interaction creates a feed-forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin-Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell-matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin-Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis.
Uljon,2016 (27041596) Uljon S, Xu X, Durzynska I, Stein S, Adelmant G, Marto JA, Pear WS, Blacklow SC "Structural Basis for Substrate Selectivity of the E3 Ligase COP1." Structure 2016 May 05
COP1 proteins are E3 ubiquitin ligases that regulate phototropism in plants and target transcription factors for degradation in mammals. The substrate-binding region of COP1 resides within a WD40-repeat domain that also binds to Trib proteins, which are adaptors for C/EBPalpha degradation. Here we report structures of the human COP1 WD40 domain in isolation, and complexes of the human and Arabidopsis thaliana COP1 WD40 domains with the binding motif of Trib1. The human and Arabidopsis WD40 domains are seven-bladed beta propellers with an inserted loop on the bottom face of the first blade. The Trib1 peptide binds in an extended conformation to a highly conserved surface on the top face of the beta propeller, indicating a general mode for recognition of peptide motifs by COP1. Together, these studies identify the structural basis and key interactions for motif recognition by COP1, and hint at how Trib1 autoinhibition is overcome to target C/EBPalpha for degradation.
Wong,2016 (27006387) Wong SS, Ostergaard S, Hall G, Li C, Williams PM, Stennicke H, Emsley J "A novel DFP tripeptide motif interacts with the coagulation factor XI apple 2 domain." Blood 2016 Jun 9
Factor XI (FXI) is the zymogen of FXIa, which cleaves FIX in the intrinsic pathway of coagulation. FXI is known to exist as a dimer and interacts with multiple proteins via its 4 apple domains in the "saucer section" of the enzyme; however, to date, no complex crystal structure has been described. To investigate protein interactions of FXI, a large random peptide library consisting of 10(6) to 10(7) peptides was screened for FXI binding, which identified a series of FXI binding motifs containing the signature Asp-Phe-Pro (DFP) tripeptide. Motifs containing this core tripeptide were found in diverse proteins, including the known ligand high-molecular-weight kininogen (HK), as well as the extracellular matrix proteins laminin and collagen V. To define the binding site on FXI, we determined the crystal structure of FXI in complex with the HK-derived peptide NPISDFPDT. This revealed the location of the DFP peptide bound to the FXI apple 2 domain, and central to the interaction, the DFP phenylalanine side-chain inserts into a major hydrophobic pocket in the apple 2 domain and the isoleucine occupies a flanking minor pocket. Two further structures of FXI in complex with the laminin-derived peptide EFPDFP and a DFP peptide from the random screen demonstrated binding in the same pocket, although in a slightly different conformation, thus revealing some flexibility in the molecular interactions of the FXI apple 2 domain.
Sato,2016 (26984404) Sato S, Jung H, Nakagawa T, Pawlosky R, Takeshima T, Lee WR, Sakiyama H, Laxman S, Wynn RM, Tu BP, MacMillan JB, De Brabander JK, Veech RL, Uyeda K "Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR." J Biol Chem 2016 May 20
The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain alpha-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-alpha2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis.
Pustovalova,2016 (26982350) Pustovalova Y, Magalhaes MT, D'Souza S, Rizzo AA, Korza G, Walker GC, Korzhnev DM "Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polzeta Suggests a Mechanism of Polymerase Exchange upon Rev1/Polzeta-Dependent Translesion Synthesis." Biochemistry 2016 Apr 5
Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polzeta-dependent TLS. In the first step, a Y-family TLS enzyme, typically Poleta, Poliota, or Polkappa, inserts a nucleotide across a DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polzeta (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polzeta and Rev1-interacting regions (RIRs) from Poleta, Poliota, or Polkappa. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polzeta whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of "inserter" to "extender" DNA polymerase switch upon Rev1/Polzeta-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the "inserter" Poleta, Poliota, or Polkappa from its complex with Rev1, and (ii) facilitates assembly of the four-subunit "extender" Polzeta through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits.
Habisov,2016 (26929408) Habisov S, Huber J, Ichimura Y, Akutsu M, Rogova N, Loehr F, McEwan DG, Johansen T, Dikic I, Doetsch V, Komatsu M, Rogov VV, Kirkin V "Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation." J Biol Chem 2016 Apr 30
The covalent conjugation of ubiquitin-fold modifier 1 (UFM1) to proteins generates a signal that regulates transcription, response to cell stress, and differentiation. Ufmylation is initiated by ubiquitin-like modifier activating enzyme 5 (UBA5), which activates and transfers UFM1 to ubiquitin-fold modifier-conjugating enzyme 1 (UFC1). The details of the interaction between UFM1 and UBA5 required for UFM1 activation and its downstream transfer are however unclear. In this study, we described and characterized a combined linear LC3-interacting region/UFM1-interacting motif (LIR/UFIM) within the C terminus of UBA5. This single motif ensures that UBA5 binds both UFM1 and light chain 3/gamma-aminobutyric acid receptor-associated proteins (LC3/GABARAP), two ubiquitin (Ub)-like proteins. We demonstrated that LIR/UFIM is required for the full biological activity of UBA5 and for the effective transfer of UFM1 onto UFC1 and a downstream protein substrate both in vitro and in cells. Taken together, our study provides important structural and functional insights into the interaction between UBA5 and Ub-like modifiers, improving the understanding of the biology of the ufmylation pathway.
Boehm,2016 (26903512) Boehm EM, Powers KT, Kondratick CM, Spies M, Houtman JC, Washington MT "The Proliferating Cell Nuclear Antigen (PCNA)-interacting Protein (PIP) Motif of DNA Polymerase eta Mediates Its Interaction with the C-terminal Domain of Rev1." J Biol Chem 2016 Apr 15
Y-family DNA polymerases, such as polymerase eta, polymerase iota, and polymerase kappa, catalyze the bypass of DNA damage during translesion synthesis. These enzymes are recruited to sites of DNA damage by interacting with the essential replication accessory protein proliferating cell nuclear antigen (PCNA) and the scaffold protein Rev1. In most Y-family polymerases, these interactions are mediated by one or more conserved PCNA-interacting protein (PIP) motifs that bind in a hydrophobic pocket on the front side of PCNA as well as by conserved Rev1-interacting region (RIR) motifs that bind in a hydrophobic pocket on the C-terminal domain of Rev1. Yeast polymerase eta, a prototypical translesion synthesis polymerase, binds both PCNA and Rev1. It possesses a single PIP motif but not an RIR motif. Here we show that the PIP motif of yeast polymerase eta mediates its interactions both with PCNA and with Rev1. Moreover, the PIP motif of polymerase eta binds in the hydrophobic pocket on the Rev1 C-terminal domain. We also show that the RIR motif of human polymerase kappa and the PIP motif of yeast Msh6 bind both PCNA and Rev1. Overall, these findings demonstrate that PIP motifs and RIR motifs have overlapping specificities and can interact with both PCNA and Rev1 in structurally similar ways. These findings also suggest that PIP motifs are a more versatile protein interaction motif than previously believed.
Murphy,2016 (26898182) Murphy SE, Levine TP "VAP, a Versatile Access Point for the Endoplasmic Reticulum: Review and analysis of FFAT-like motifs in the VAPome." Biochim Biophys Acta 2016 Aug
Dysfunction of VAMP-associated protein (VAP) is associated with neurodegeneration, both Amyotrophic Lateral Sclerosis and Parkinson's disease. Here we summarize what is known about the intracellular interactions of VAP in humans and model organisms. VAP is a simple, small and highly conserved protein on the cytoplasmic face of the endoplasmic reticulum (ER). It is the sole protein on that large organelle that acts as a receptor for cytoplasmic proteins. This may explain the extremely wide range of interacting partners of VAP, with components of many cellular pathways binding it to access the ER. Many proteins that bind VAP also target other intracellular membranes, so VAP is a component of multiple molecular bridges at membrane contact sites between the ER and other organelles. So far approximately 100 proteins have been identified in the VAP interactome (VAPome), of which a small minority have a "two phenylalanines in an acidic tract" (FFAT) motif as it was originally defined. We have analyzed the entire VAPome in humans and yeast using a simple algorithm that identifies many more FFAT-like motifs. We show that approximately 50% of the VAPome binds directly or indirectly via the VAP-FFAT interaction. We also review evidence on pathogenesis in genetic disorders of VAP, which appear to arise from reduced overall VAP levels, leading to ER stress. It is not possible to identify one single interaction that underlies disease. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Stevers,2016 (26888287) Stevers LM, Lam CV, Leysen SF, Meijer FA, van Scheppingen DS, de Vries RM, Carlile GW, Milroy LG, Thomas DY, Brunsveld L, Ottmann C "Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR." Proc Natl Acad Sci U S A 2016 Mar 02
Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.
Li,2016 (26820724) Li Y, Burclaff J, Anderson JT "Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro." PLoS One 2016 Jan 29
RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities.
Kilisch,2016 (26743085) Kilisch M, Lytovchenko O, Arakel EC, Bertinetti D, Schwappach B "A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1." J Cell Sci 2016 Feb 24
The transport of the K(+) channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic.
Lee,2016 (26735018) Lee SB, Frattini V, Bansal M, Castano AM, Sherman D, Hutchinson K, Bruce JN, Califano A, Liu G, Cardozo T, Iavarone A, Lasorella A "An ID2-dependent mechanism for VHL inactivation in cancer." Nature 2016 Jan 14
Mechanisms that maintain cancer stem cells are crucial to tumour progression. The ID2 protein supports cancer hallmarks including the cancer stem cell state. HIFalpha transcription factors, most notably HIF2alpha (also known as EPAS1), are expressed in and required for maintenance of cancer stem cells (CSCs). However, the pathways that are engaged by ID2 or drive HIF2alpha accumulation in CSCs have remained unclear. Here we report that DYRK1A and DYRK1B kinases phosphorylate ID2 on threonine 27 (Thr27). Hypoxia downregulates this phosphorylation via inactivation of DYRK1A and DYRK1B. The activity of these kinases is stimulated in normoxia by the oxygen-sensing prolyl hydroxylase PHD1 (also known as EGLN2). ID2 binds to the VHL ubiquitin ligase complex, displaces VHL-associated Cullin 2, and impairs HIF2alpha ubiquitylation and degradation. Phosphorylation of Thr27 of ID2 by DYRK1 blocks ID2-VHL interaction and preserves HIF2alpha ubiquitylation. In glioblastoma, ID2 positively modulates HIF2alpha activity. Conversely, elevated expression of DYRK1 phosphorylates Thr27 of ID2, leading to HIF2alpha destabilization, loss of glioma stemness, inhibition of tumour growth, and a more favourable outcome for patients with glioblastoma.
Maertens,2016 (26657642) Maertens GN "B'-protein phosphatase 2A is a functional binding partner of delta-retroviral integrase." Nucleic Acids Res 2016 Jan 09
To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is identified as a functional IN binding partner exclusive to delta-retroviruses, including human T cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) and bovine leukaemia virus (BLV). PP2A is a heterotrimer composed of a scaffold, catalytic and one of any of four families of regulatory subunits, and the interaction is specific to the B' family of the regulatory subunits. B'-PP2A and HTLV-1 IN display nuclear co-localization, and the B' subunit stimulates concerted strand transfer activity of delta-retroviral INs in vitro. The protein-protein interaction interface maps to a patch of highly conserved residues on B', which when mutated render B' incapable of binding to and stimulating HTLV-1 and -2 IN strand transfer activity.
Bugalhao,2016 (26626407) Bugalhao JN, Mota LJ, Franco IS "Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking." Microbiologyopen 2016 Feb
The Legionella pneumophila effector protein VipA is an actin nucleator that co-localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2 -terminal (amino acid residues 1-133) and central coiled-coil (amino acid residues 133-206) regions, and suggested a role for the COOH-terminal (amino acid residues 206-339) region in association with actin filaments and for the NH2 -terminal in co-localization with early endosomes. Co-immunoprecipitation and in vitro assays showed that the COOH-terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH-terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2 -terminal region and its capacity to bind and polymerize actin through its COOH-terminal region.
Fox,2016 (26612606) Fox MJ, Mosley AL "Rrp6: Integrated roles in nuclear RNA metabolism and transcription termination." Wiley Interdiscip Rev RNA 2016 Jan 15
The yeast RNA exosome is a eukaryotic ribonuclease complex essential for RNA processing, surveillance, and turnover. It is comprised of a barrel-shaped core and cap as well as a 3'-5' ribonuclease known as Dis3 that contains both endo- and exonuclease domains. A second exonuclease, Rrp6, is added in the nucleus. Dis3 and Rrp6 have both shared and distinct roles in RNA metabolism, and this review will focus primarily on Rrp6 and the roles of the RNA exosome in the nucleus. The functions of the nuclear exosome are modulated by cofactors and interacting partners specific to each type of substrate. Generally, the cofactor TRAMP (Trf4/5-Air2/1-Mtr4 polyadenylation) complex helps unwind unstable RNAs, RNAs requiring processing such as rRNAs, tRNAs, or snRNAs or improperly processed RNAs and direct it toward the exosome. In yeast, Rrp6 interacts with Nrd1, the cap-binding complex, and RNA polymerase II to aid in nascent RNA processing, termination, and polyA tail length regulation. Recent studies have shown that proper termination and processing of short, noncoding RNAs by Rrp6 is particularly important for transcription regulation across the genome and has important implications for regulation of diverse processes at the cellular level. Loss of proper Rrp6 and exosome activity may contribute to various pathologies such as autoimmune disease, neurological disorders, and cancer. WIREs RNA 2016, 7:91-104. doi: 10.1002/wrna.1317 For further resources related to this article, please visit the WIREs website.
Suckling,2015 (26578768) Suckling RJ, Poon PP, Travis SM, Majoul IV, Hughson FM, Evans PR, Duden R, Owen DJ "Structural basis for the binding of tryptophan-based motifs by delta-COP." Proc Natl Acad Sci U S A 2015 Nov 17
Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding betagammadeltazeta-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding alphabeta'epsilon-COP B-subcomplex. We present the structure of the C-terminal mu-homology domain of the yeast delta-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP mu subunits to bind YxxPhi cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to delta-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian delta-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that delta-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.
Okrut,2015 (26554011) Okrut J, Prakash S, Wu Q, Kelly MJ, Taunton J "Allosteric N-WASP activation by an inter-SH3 domain linker in Nck." Proc Natl Acad Sci U S A 2015 Nov 25
Actin filament networks assemble on cellular membranes in response to signals that locally activate neural Wiskott-Aldrich-syndrome protein (N-WASP) and the Arp2/3 complex. An inactive conformation of N-WASP is stabilized by intramolecular contacts between the GTPase binding domain (GBD) and the C helix of the verprolin-homology, connector-helix, acidic motif (VCA) segment. Multiple SH3 domain-containing adapter proteins can bind and possibly activate N-WASP, but it remains unclear how such binding events relieve autoinhibition to unmask the VCA segment and activate the Arp2/3 complex. Here, we have used purified components to reconstitute a signaling cascade driven by membrane-localized Src homology 3 (SH3) adapters and N-WASP, resulting in the assembly of dynamic actin networks. Among six SH3 adapters tested, Nck was the most potent activator of N-WASP-driven actin assembly. We identify within Nck a previously unrecognized activation motif in a linker between the first two SH3 domains. This linker sequence, reminiscent of bacterial virulence factors, directly engages the N-WASP GBD and competes with VCA binding. Our results suggest that animals, like pathogenic bacteria, have evolved peptide motifs that allosterically activate N-WASP, leading to localized actin nucleation on cellular membranes.
Aouacheria,2015 (26541461) Aouacheria A, Combet C, Tompa P, Hardwick JM "Redefining the BH3 Death Domain as a 'Short Linear Motif'." Trends Biochem Sci 2015 Nov 25
B cell lymphoma-2 (BCL-2)-related proteins control programmed cell death through a complex network of protein-protein interactions mediated by BCL-2 homology 3 (BH3) domains. Given their roles as dynamic linchpins, the discovery of novel BH3-containing proteins has attracted considerable attention. However, without a clearly defined BH3 signature sequence the BCL-2 family has expanded to include a nebulous group of nonhomologous BH3-only proteins, now justified by an intriguing twist. We present evidence that BH3s from both ordered and disordered proteins represent a new class of short linear motifs (SLiMs) or molecular recognition features (MoRFs) and are diverse in their evolutionary histories. The implied corollaries are that BH3s have a broad phylogenetic distribution and could potentially bind to non-BCL-2-like structural domains with distinct functions.
Zeke,2015 (26538579) Zeke A, Bastys T, Alexa A, Garai A, Meszaros B, Kirsch K, Dosztanyi Z, Kalinina OV, Remenyi A "Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases." Mol Syst Biol 2015 Nov 05
Mitogen-activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less-characterized disordered regions. We used a structurally consistent model on kinase-docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under-explored part of the human proteome and applied experimental tools specifically tailored to detect low-affinity protein-protein interactions for their validation in vitro and in cell-based assays. The combined computational and experimental approach enabled the identification of many novel MAPK-docking motifs that were elusive for other large-scale protein-protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase-mediated partnerships evolved over time. The analysis suggests that most human MAPK-binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK-binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.
Wang,2015 (26442585) Wang Y, Zheng Z, Zhang J, Kong R, Liu J, Zhang Y, Deng H, Du X, Ke Y "A Novel Retinoblastoma Protein (RB) E3 Ubiquitin Ligase (NRBE3) Promotes RB Degradation and Is Transcriptionally Regulated by E2F1 Transcription Factor." J Biol Chem 2015 Nov 21
Retinoblastoma protein (RB) plays critical roles in tumor suppression and is degraded through the proteasomal pathway. However, E3 ubiquitin ligases responsible for proteasome-mediated degradation of RB are largely unknown. Here we characterize a novel RB E3 ubiquitin ligase (NRBE3) that binds RB and promotes RB degradation. NRBE3 contains an LXCXE motif and bound RB in vitro. NRBE3 interacted with RB in cells when proteasome activity was inhibited. NRBE3 promoted RB ubiquitination and degradation via the ubiquitin-proteasome pathway. Importantly, purified NRBE3 ubiquitinated recombinant RB in vitro, and a U-box was identified as essential for its E3 activity. Surprisingly, NRBE3 was transcriptionally activated by E2F1/DP1. Consequently, NRBE3 affected the cell cycle by promoting G1/S transition. Moreover, NRBE3 was up-regulated in breast cancer tissues. Taken together, we identified NRBE3 as a novel ubiquitin E3 ligase for RB that might play a role as a potential oncoprotein in human cancers.
Kristensen,2015 (26410532) Kristensen O "Crystal structure of the G3BP2 NTF2-like domain in complex with a canonical FGDF motif peptide." Biochem Biophys Res Commun 2015 Oct 16
The crystal structure of the NTF2-like domain of the human Ras GTPase SH3 Binding Protein (G3BP), isoform 2, was determined at a resolution of 2.75 A in complex with a peptide containing a FGDF sequence motif. The overall structure of the protein is highly similar to the homodimeric N-terminal domains of the G3BP1 and Rasputin proteins. Recently, a subset of G3BP interacting proteins was recognized to share a common sequence motif, FGDF. The most studied binding partners, USP10 and viral nsP3, interfere with essential G3BP functions related to assembly of cellular stress granules. Reported molecular modeling suggested that FGDF-motif containing peptides bind in an extended conformation into a hydrophobic groove on the surface of the G3BP NTF2-like domain in a manner similar to the known binding of FxFG nucleoporin repeats. The results in this paper provide evidence for a different binding mode. The FGDF peptide binds and changes conformation of the protruding N-terminal residues by providing hydrophobic interactions to a symmetry related molecule that facilitated crystallization of the G3BP2 isoform.
Richards,2016 (26385761) Richards KF, Guastafierro A, Shuda M, Toptan T, Moore PS, Chang Y "Merkel cell polyomavirus T antigens promote cell proliferation and inflammatory cytokine gene expression." J Gen Virol 2016 Jun 02
Merkel cell polyomavirus (MCV) is clonally integrated in over 80 % of Merkel cell carcinomas and mediates tumour development through the expression of viral oncoproteins, the large T (LT) and small T antigens (sT). Viral integration is associated with signature mutations in the T-antigen locus that result in deletions of C-terminal replicative functions of the LT antigen. Despite these truncations, the LT LXCXE retinoblastoma (Rb) pocket protein family binding domain is retained, and the entire sT isoform is maintained intact. To investigate the ability of MCV oncoproteins to regulate host gene expression, we performed microarray analysis on cells stably expressing tumour-derived LT, tumour-derived LT along with sT, and tumour-derived LT with a mutated Rb interaction domain. Gene expression alterations in the presence of tumour-derived LT could be classified into three main groups: genes that are involved in the cell cycle (specifically the G1/S transition), genes involved in DNA replication and genes involved in cellular movement. The LXCXE mutant LT largely reversed gene expression alterations detected with the WT tumour-derived LT, while co-expression of sT did not significantly affect these patterns of gene expression. LXCXE-dependent upregulation of cyclin E and CDK2 correlated with increased proliferation in tumour-derived LT-expressing cells. Tumour-derived LT and tumour-derived LT plus sT increased expression of multiple cytokines and chemokines, which resulted in elevated levels of secreted IL-8. We concluded that, in human fibroblasts, the LXCXE motif of tumour-derived LT enhances cellular proliferation and upregulates cell cycle and immune signalling gene transcription.
Fros,2015 (26384002) Fros JJ, Geertsema C, Zouache K, Baggen J, Domeradzka N, van Leeuwen DM, Flipse J, Vlak JM, Failloux AB, Pijlman GP "Mosquito Rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus." Parasit Vectors 2015 Sep 19
BACKGROUND: Chikungunya virus (CHIKV) is an arthritogenic alphavirus (family Togaviridae), transmitted by Aedes species mosquitoes. CHIKV re-emerged in 2004 with multiple outbreaks worldwide and recently reached the Americas where it has infected over a million individuals in a rapidly expanding epidemic. While alphavirus replication is well understood in general, the specific function (s) of non-structural protein nsP3 remain elusive. CHIKV nsP3 modulates the mammalian stress response by preventing stress granule formation through sequestration of G3BP. In mosquitoes, nsP3 is a determinant of vector specificity, but its functional interaction with mosquito proteins is unclear. METHODS: In this research we studied the domains required for localization of CHIKV nsP3 in insect cells and demonstrated its molecular interaction with Rasputin (Rin), the mosquito homologue of G3BP. The biological involvement of Rin in CHIKV infection was investigated in live Ae. albopictus mosquitoes. RESULTS: In insect cells, nsP3 localized as cytoplasmic granules, which was dependent on the central domain and the C-terminal variable region but independent of the N-terminal macrodomain. Ae. albopictus Rin displayed a diffuse, cytoplasmic localization, but was effectively sequestered into nsP3-granules upon nsP3 co-expression. Site-directed mutagenesis showed that the Rin-nsP3 interaction involved the NTF2-like domain of Rin and two conserved TFGD repeats in the C-terminal variable domain of nsP3. Although in vitro silencing of Rin did not impact nsP3 localization or CHIKV replication in cell culture, Rin depletion in vivo significantly decreased the CHIKV infection rate and transmissibility in Ae.albopictus. CONCLUSIONS: We identified the nsP3 hypervariable C-terminal domain as a critical factor for granular localization and sequestration of mosquito Rin. Our study offers novel insight into a conserved virus-mosquito interaction at the molecular level, and reveals a strong proviral role for G3BP homologue Rin in live mosquitoes, making the nsP3-Rin interaction a putative target to interfere with the CHIKV transmission cycle.
Schrama,2016 (26383606) Schrama D, Hesbacher S, Angermeyer S, Schlosser A, Haferkamp S, Aue A, Adam C, Weber A, Schmidt M, Houben R "Serine 220 phosphorylation of the Merkel cell polyomavirus large T antigen crucially supports growth of Merkel cell carcinoma cells." Int J Cancer 2016 Jan 15
Merkel cell polyomavirus (MCPyV) is regarded as a major causal factor for Merkel cell carcinoma (MCC). Indeed, tumor cell growth of MCPyV-positive MCC cells is dependent on the expression of a truncated viral Large T antigen (LT) with an intact retinoblastoma protein (RB)-binding site. Here we determined the phosphorylation pattern of a truncated MCPyV-LT characteristically for MCC by mass spectrometry revealing MCPyV-LT as multi-phospho-protein phosphorylated at several serine and threonine residues. Remarkably, disruption of most of these phosphorylation sites did not affect its ability to rescue knockdown of endogenous T antigens in MCC cells indicating that phosphorylation of the respective amino acids is not essential for the growth promoting function of MCPyV-LT. However, alteration of serine 220 to alanine completely abolished the ability of MCPyV-LT to support proliferation of MCC cells. Conversely, mimicking the phosphorylated state by mutation of serine 220 to glutamic acid resulted in a fully functional LT. Moreover, MCPyV-LT(S220A) demonstrated reduced binding to RB in co-immunoprecipitation experiments as well as weaker induction of RB target genes in MCC cells. In conclusion, we provide evidence that phosphorylation of serine 220 is required for efficient RB inactivation in MCC and may therefore be a potential target for future therapeutic approaches.
Bardwell,2015 (26370088) Bardwell AJ, Bardwell L "Two hydrophobic residues can determine the specificity of mitogen-activated protein kinase docking interactions." J Biol Chem 2015 Oct 31
MAPKs bind to many of their upstream regulators and downstream substrates via a short docking motif (the D-site) on their binding partner. MAPKs that are in different families (e.g. ERK, JNK, and p38) can bind selectively to D-sites in their authentic substrates and regulators while discriminating against D-sites in other pathways. Here we demonstrate that the short hydrophobic region at the distal end of the D-site plays a critical role in determining the high selectivity of JNK MAPKs for docking sites in their cognate MAPK kinases. Changing just 1 or 2 key hydrophobic residues in this submotif is sufficient to turn a weak JNK-binding D-site into a strong one, or vice versa. These specificity-determining differences are also found in the D-sites of the ETS family transcription factors Elk-1 and Net. Moreover, swapping two hydrophobic residues between these D-sites switches the relative efficiency of Elk-1 and Net as substrates for ERK versus JNK, as predicted. These results provide new insights into docking specificity and suggest that this specificity can evolve rapidly by changes to just 1 or 2 amino acids.
Chen,2015 (26344567) Chen HC, Kanai M, Inoue-Yamauchi A, Tu HC, Huang Y, Ren D, Kim H, Takeda S, Reyna DE, Chan PM, Ganesan YT, Liao CP, Gavathiotis E, Hsieh JJ, Cheng EH "An interconnected hierarchical model of cell death regulation by the BCL-2 family." Nat Cell Biol 2015 Sep 30
Multidomain pro-apoptotic BAX and BAK, once activated, permeabilize mitochondria to trigger apoptosis, whereas anti-apoptotic BCL-2 members preserve mitochondrial integrity. The BH3-only molecules (BH3s) promote apoptosis by either activating BAX-BAK or inactivating anti-apoptotic members. Here, we present biochemical and genetic evidence that NOXA is a bona fide activator BH3. Using combinatorial gain-of-function and loss-of-function approaches in Bid(-/-)Bim(-/-)Puma(-/-)Noxa(-/-) and Bax(-/-)Bak(-/-) cells, we have constructed an interconnected hierarchical model that accommodates and explains how the intricate interplays between the BCL-2 members dictate cellular survival versus death. BID, BIM, PUMA and NOXA directly induce stepwise, bimodal activation of BAX-BAK. BCL-2, BCL-XL and MCL-1 inhibit both modes of BAX-BAK activation by sequestering activator BH3s and 'BH3-exposed' monomers of BAX-BAK, respectively. Furthermore, autoactivation of BAX and BAK can occur independently of activator BH3s through downregulation of BCL-2, BCL-XL and MCL-1. Our studies lay a foundation for targeting the BCL-2 family for treating diseases with dysregulated apoptosis.
Choi,2015 (26254224) Choi HH, Phan L, Chou PC, Su CH, Yeung SC, Chen JS, Lee MH "COP1 enhances ubiquitin-mediated degradation of p27Kip1 to promote cancer cell growth." Oncotarget 2015 Aug 26
p27 is a critical CDK inhibitor involved in cell cycle regulation, and its stability is critical for cell proliferation. Constitutive photomorphogenic 1 (COP1) is a RING-containing E3 ubiquitin ligase involved in regulating important target proteins for cell growth, but its biological activity in cell cycle progression is not well characterized. Here, we report that p27Kip1 levels are accumulated in G1 phase, with concurrent reduction of COP1 levels. Mechanistic studies show that COP1 directly interacts with p27 through a VP motif on p27 and functions as an E3 ligase of p27 to accelerate the ubiquitin-mediated degradation of p27. Also, COP1-p27 axis deregulation is involved in tumorigenesis. These findings define a new mechanism for posttranslational regulation of p27 and provide insight into the characteristics of COP1-overexpressing cancers.
Zhao,2015 (26183396) Zhao Y, Yang X "Regulation of sensitivity of tumor cells to antitubulin drugs by Cdk1-TAZ signalling." Oncotarget 2015 Sep 22
Antitubulin drugs are commonly used for the treatment of numerous cancers. However, either the intrinsic or acquired resistances of patients to these drugs result in the failure of the treatment and high mortality of cancers. Therefore, identifying genes or signalling pathways involved in antitubulin drug resistances is critical for future successful treatment of cancers.TAZ (Transcriptional coactivator with PDZ-binding motif), which is a core component of the Hippo pathway, is overexpressed in various cancers. We have recently shown that high levels of TAZ in cancer cells result in Taxol resistance through up-regulation of downstream targets Cyr61 and CTGF. However, how TAZ is regulated in response to Taxol is largely unknown. In this study, we found that Cdk1 (Cyclin-dependent kinase 1) directly phosphorylated TAZ on six novel sites independent of the Hippo pathway, which further resulted in TAZ degradation through proteasome system. Phosphorylation-mimicking TAZ mutant was unstable, and therefore abolished TAZ-induced antitubulin drug resistances. This study provides first evidence that Cdk1 is a novel kinase phosphorylating and regulating TAZ stability and suggests that Cdk1-TAZ signalling is a critical regulator of antitubulin drug response in cancer cells and may be a potential target for the treatment of antitubulin-drug resistant cancer patients.
Dodonova,2015 (26160949) Dodonova SO, Diestelkoetter-Bachert P, von Appen A, Hagen WJ, Beck R, Beck M, Wieland F, Briggs JA "VESICULAR TRANSPORT. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly." Science 2015 Jul 10
Transport of material within cells is mediated by trafficking vesicles that bud from one cellular compartment and fuse with another. Formation of a trafficking vesicle is driven by membrane coats that localize cargo and polymerize into cages to bend the membrane. Although extensive structural information is available for components of these coats, the heterogeneity of trafficking vesicles has prevented an understanding of how complete membrane coats assemble on the membrane. We combined cryo-electron tomography, subtomogram averaging, and cross-linking mass spectrometry to derive a complete model of the assembled coat protein complex I (COPI) coat involved in traffic between the Golgi and the endoplasmic reticulum. The highly interconnected COPI coat structure contradicted the current "adaptor-and-cage" understanding of coated vesicle formation.
Vleugel,2015 (26148513) Vleugel M, Hoek TA, Tromer E, Sliedrecht T, Groenewold V, Omerzu M, Kops GJ "Dissecting the roles of human BUB1 in the spindle assembly checkpoint." J Cell Sci 2015 Aug 16
Mitotic chromosome segregation is initiated by the anaphase promoting complex/cyclosome (APC/C) and its co-activator CDC20 (forming APC/C(CDC20)). APC/C(CDC20) is inhibited by the spindle assembly checkpoint (SAC) when chromosomes have not attached to spindle microtubules. Unattached kinetochores catalyze the formation of a diffusible APC/C(CDC20) inhibitor that comprises BUBR1 (also known as BUB1B), BUB3, MAD2 (also known as MAD2L1) and a second molecule of CDC20. Recruitment of these proteins to the kinetochore, as well as SAC activation, rely on the mitotic kinase BUB1, but the molecular mechanism by which BUB1 accomplishes this in human cells is unknown. We show that kinetochore recruitment of BUBR1 and BUB3 by BUB1 is dispensable for SAC activation. Unlike its yeast and nematode orthologs, human BUB1 does not associate stably with the MAD2 activator MAD1 (also known as MAD1L1) and, although required for accelerating the loading of MAD1 onto kinetochores, BUB1 is dispensable for the maintenance of steady-state levels of MAD1 there. Instead, we identify a 50-amino-acid segment that harbors the recently reported ABBA motif close to a KEN box as being crucial for the role of BUB1 in SAC signaling. The presence of this segment correlates with SAC activity and efficient binding of CDC20 but not of MAD1 to kinetochores.
Cui,2015 (26144232) Cui B, Fang S, Xing Y, Shen Y, Yang X "Crystallographic analysis of the Arabidopsis thaliana BAG5-calmodulin protein complex." Acta Crystallogr F Struct Biol Commun 2015 Jul
Arabidopsis thaliana BAG5 (AtBAG5) belongs to the plant BAG (Bcl-2-associated athanogene) family that performs diverse functions ranging from growth and development to abiotic stress and senescence. BAG family members can act as nucleotide-exchange factors for heat-shock protein 70 (Hsp70) through binding of their evolutionarily conserved BAG domains to the Hsp70 ATPase domain, and thus may be involved in the regulation of chaperone-mediated protein folding in plants. AtBAG5 is distinguished from other family members by the presence of a unique IQ motif adjacent to the BAG domain; this motif is specific for calmodulin (CaM) binding, indicating a potential role in the plant calcium signalling pathway. To provide a better understanding of the IQ motif-mediated interaction between AtBAG5 and CaM, the two proteins were expressed and purified separately and then co-crystallized together. Diffraction-quality crystals of the complex were grown using the sitting-drop vapour-diffusion technique from a condition consisting of 0.1 M Tris-HCl pH 8.5, 2.5 M ammonium sulfate. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 64.56, b = 74.89, c = 117.09 A. X-ray diffraction data were recorded to a resolution of 2.5 A from a single crystal using synchrotron radiation. Assuming the presence of two molecules in the asymmetric unit, a Matthews coefficient of 2.44 A(3) Da(-1) was calculated, corresponding to a solvent content of approximately 50%.
McInerney,2015 (26101899) McInerney GM "FGDF motif regulation of stress granule formation." DNA Cell Biol 2015 Sep 03
RNA stress granules (SGs) represent a cell-intrinsic antiviral defense mechanism. The assembly of SGs in response to viral infection is coordinated by the cellular protein G3BP, which is targeted by many viruses to block SG formation. We recently showed that proteins containing the short linear motif Phe-Gly-Asp-Phe (FGDF), bind G3BP in a hydrophobic groove on the surface of the nuclear transport factor-2-like domain. Binding in this manner blocks the ability of G3BP to form SGs and allows efficient replication of viruses carrying this motif.
Moyer,2015 (26101219) Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ "Binding of STIL to Plk4 activates kinase activity to promote centriole assembly." J Cell Biol 2015 Jun 23
Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle-regulated accumulation of STIL.
Soppa,2015 (26079075) Soppa U, Becker W "DYRK protein kinases." Curr Biol 2015 Jun 15
Soppa and Becker introduce the DYRK family of dual specificity protein kinases and their diverse functions and associations with genetic diseases.
Pfoh,2015 (26046769) Pfoh R, Lacdao IK, Georges AA, Capar A, Zheng H, Frappier L, Saridakis V "Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7." PLoS Pathog 2015 Jun 06
Herpes simplex virus-1 immediate-early protein ICP0 activates viral genes during early stages of infection, affects cellular levels of multiple host proteins and is crucial for effective lytic infection. Being a RING-type E3 ligase prone to auto-ubiquitination, ICP0 relies on human deubiquitinating enzyme USP7 for protection against 26S proteasomal mediated degradation. USP7 is involved in apoptosis, epigenetics, cell proliferation and is targeted by several herpesviruses. Several USP7 partners, including ICP0, GMPS, and UHRF1, interact through its C-terminal domain (CTD), which contains five ubiquitin-like (Ubl) structures. Despite the fact that USP7 has emerged as a drug target for cancer therapy, structural details of USP7 regulation and the molecular mechanism of interaction at its CTD have remained elusive. Here, we mapped the binding site between an ICP0 peptide and USP7 and determined the crystal structure of the first three Ubl domains bound to the ICP0 peptide, which showed that ICP0 binds to a loop on Ubl2. Sequences similar to the USP7-binding site in ICP0 were identified in GMPS and UHRF1 and shown to bind USP7-CTD through Ubl2. In addition, co-immunoprecipitation assays in human cells comparing binding to USP7 with and without a Ubl2 mutation, confirmed the importance of the Ubl2 binding pocket for binding ICP0, GMPS and UHRF1. Therefore we have identified a novel mechanism of USP7 recognition that is used by both viral and cellular proteins. Our structural information was used to generate a model of near full-length USP7, showing the relative position of the ICP0/GMPS/UHRF1 binding pocket and the structural basis by which it could regulate enzymatic activity.
Wu,2015 (26025930) Wu H, Leng RP "MDM2 mediates p73 ubiquitination: a new molecular mechanism for suppression of p73 function." Oncotarget 2015 May 30
The protein p73, a homologue of the tumor suppressor protein p53, is capable of inducing apoptosis and cell cycle arrest. MDM2 is transcriptionally activated by p73 and represses the functions of p73, including p73-dependent transactivation and growth suppression. However, the molecular mechanism of this repression is unknown. In this study, we show that MDM2 mediates p73 ubiquitination. MDM2 mainly utilizes K11, K29 and K63-linked chains to mediate p73 ubiquitination in vivo and in vitro. However, MDM2 is unable to promote p73 degradation in most tested cell lines. Surprisingly, we observe that overexpression of Mdm2 promotes p73 degradation mainly through Itch in Mdm2-null MEFs. We further find that Itch interacts with the transfected Mdm2 in Mdm2-null cells. Moreover, our findings reveal that the E3 ligase activity of MDM2 is required to repress p73-dependent apoptosis and cell cycle arrest but not p73-dependent transcriptional activity. Furthermore, the data suggest a link between p73 ubiquitination/MDM2 E3 ligase activity and p73 biological functions.
Sakai,2015 (26001786) Sakai T, Jung HS, Sato O, Yamada MD, You DJ, Ikebe R, Ikebe M "Structure and Regulation of the Movement of Human Myosin VIIA." J Biol Chem 2015 Jul 10
Human myosin VIIA (HM7A) is responsible for human Usher syndrome type 1B, which causes hearing and visual loss in humans. Here we studied the regulation of HM7A. The actin-activated ATPase activity of full-length HM7A (HM7AFull) was lower than that of tail-truncated HM7A (HM7ADeltaTail). Deletion of the C-terminal 40 amino acids and mutation of the basic residues in this region (R2176A or K2179A) abolished the inhibition. Electron microscopy revealed that HM7AFull is a monomer in which the tail domain bends back toward the head-neck domain to form a compact structure. This compact structure is extended at high ionic strength or in the presence of Ca(2+). Although myosin VIIA has five isoleucine-glutamine (IQ) motifs, the neck length seems to be shorter than the expected length of five bound calmodulins. Supporting this observation, the IQ domain bound only three calmodulins in Ca(2+), and the first IQ motif failed to bind calmodulin in EGTA. These results suggest that the unique IQ domain of HM7A is important for the tail-neck interaction and, therefore, regulation. Cellular studies revealed that dimer formation of HM7A is critical for its translocation to filopodial tips and that the tail domain (HM7ATail) markedly reduced the filopodial tip localization of the HM7ADeltaTail dimer, suggesting that the tail-inhibition mechanism is operating in vivo. The translocation of the HM7AFull dimer was significantly less than that of the HM7ADeltaTail dimer, and R2176A/R2179A mutation rescued the filopodial tip translocation. These results suggest that HM7A can transport its cargo molecules, such as USH1 proteins, upon release of the tail-dependent inhibition.
Cheng,2015 (25960197) Cheng J, Yang H, Fang J, Ma L, Gong R, Wang P, Li Z, Xu Y "Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation." Nat Commun 2015 May 11
DNMT1 is an important epigenetic regulator that plays a key role in the maintenance of DNA methylation. Here we determined the crystal structure of DNMT1 in complex with USP7 at 2.9 A resolution. The interaction between the two proteins is primarily mediated by an acidic pocket in USP7 and Lysine residues within DNMT1's KG linker. This intermolecular interaction is required for USP7-mediated stabilization of DNMT1. Acetylation of the KG linker Lysine residues impair DNMT1-USP7 interaction and promote the degradation of DNMT1. Treatment with HDAC inhibitors results in an increase in acetylated DNMT1 and decreased total DNMT1 protein. This negative correlation is observed in differentiated neuronal cells and pancreatic cancer cells. Our studies reveal that USP7-mediated stabilization of DNMT1 is regulated by acetylation and provide a structural basis for the design of inhibitors, targeting the DNMT1-USP7 interaction surface for therapeutic applications.
Killoran,2015 (25909186) Killoran RC, Fan J, Yang D, Shilton BH, Choy WY "Structural Analysis of the 14-3-3zeta/Chibby Interaction Involved in Wnt/beta-Catenin Signaling." PLoS One 2015 Apr 27
The partially disordered Chibby (Cby) is a conserved nuclear protein that antagonizes the Wnt/beta-catenin signaling pathway. By competing with the Tcf/Lef family proteins for binding to beta-catenin, Cby abrogates the beta-catenin-mediated transcription of Wnt signaling genes. Additionally, upon phosphorylation on S20 by the kinase Akt, Cby forms a complex with 14-3-3 to facilitate the nuclear export of beta-catenin, which represents another crucial mechanism for the regulation of Wnt signaling. To obtain a mechanistic understanding of the 14-3-3/Cby interaction, we have extensively characterized the complex using X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and isothermal titration calorimetry (ITC). The crystal structure of the human 14-3-3zeta/Cby protein-peptide complex reveals a canonical binding mode; however the residue at the +2 position from the phosphorylated serine is shown to be uniquely oriented relative to other solved structures of 14-3-3 complexes. Our ITC results illustrate that although the phosphorylation of S20 is essential for Cby to recognize 14-3-3, residues flanking the phosphorylation site also contribute to the binding affinity. However, as is commonly observed in other 14-3-3/phosphopeptide crystal structures, residues of Cby flanking the 14-3-3 binding motif lack observable electron density. To obtain a more detailed binding interface, we have completed the backbone NMR resonance assignment of 14-3-3zeta. NMR titration experiments reveal that residues outside of the 14-3-3 conserved binding cleft, namely a flexible loop consisting of residues 203-210, are also involved in binding Cby. By using a combined X-ray and NMR approach, we have dissected the molecular basis of the 14-3-3/Cby interaction.
Katayama,2015 (25905439) Katayama S, Sueyoshi N, Kameshita I "Critical Determinants of Substrate Recognition by Cyclin-Dependent Kinase-like 5 (CDKL5)." Biochemistry 2015 May 19
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase known to be associated with X-linked neurodevelopmental disorders. In a previous study, we identified amphiphysin 1 (Amph1) as a potential substrate for CDKL5 and identified a single phosphorylation site at Ser-293. In this study, we investigated the molecular mechanisms of substrate recognition by CDKL5 using Amph1 as a model substrate. Amph1 served as an efficient CDKL5 substrate, whereas Amph2, a structurally related homologue of Amph1, was not phosphorylated by CDKL5. The sequence around the Amph1 phosphorylation site is RPR(293)SPSQ, while the corresponding sequence in Amph2 is IPK(332)SPSQ. To define the amino acid sequence specificity of the substrate, various point mutants of Amph1 and Amph2 were prepared and phosphorylated by CDKL5. Both Amph2(I329R) and Amph1 served as efficient CDKL5 substrates, but Amph1(R290I) did not, indicating that the arginyl residue at the P -3 position is critical for substrate recognition. With regard to prolyl residues around the phosphorylation site of Amph1, Pro-291 at the P -2 position, but not Pro-294 at the P +1 position, is indispensable for phosphorylation by CDKL5. Phosphorylation experiments using various deletion mutants of Amph1 revealed that the proline-rich domain (PRD) (amino acids 247-315) alone was not phosphorylated by CDKL5. In contrast, Amph1(247-385), which comprised the PRD and CLAP domains, served as an efficient CDKL5 substrate. These results, taken together, suggest that both the phosphorylation site sequence (RPXSX) and the CLAP domain structure in Amph1 play crucial roles in recognition and phosphorylation by CDKL5.
Selvaraj,2015 (25885538) Selvaraj N, Kedage V, Hollenhorst PC "Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells." Cell Commun Signal 2015 Apr 18
BACKGROUND: The RAS/MAPK signaling pathway can regulate gene expression by phosphorylating and altering the function of some, but not all, ETS transcription factors. ETS family transcription factors bind similar DNA sequences and can compete for genomic binding sites. However, MAPK regulation varies across the ETS family. Therefore, changing the ETS factor bound to a cis-regulatory element can alter MAPK regulation of gene expression. To understand RAS/MAPK regulated gene expression programs, comprehensive knowledge of the ETS family members that are MAPK targets and relative MAPK targeting efficiency across the family is needed. RESULTS: An in vitro kinase assay was used to rank-order 27 human ETS family transcription factors based on phosphorylation by ERK2, JNK1, and p38alpha. Many novel MAPK targets and specificities were identified within the ETS family, including the identification of the prostate cancer oncoprotein ERG as a specific target of ERK2. ERK2 phosphorylation of ERG S215 required a DEF docking domain and was necessary for ERG to activate transcription of cell migration genes and promote prostate cell migration. The ability of ERK2 to bind ERG with higher affinity than ETS1 provided a potential molecular explanation for why ERG overexpression drives migration of prostate cells with low levels of RAS/ERK signaling, while ETS1 has a similar function only when RAS/ERK signaling is high. CONCLUSIONS: The rank ordering of ETS transcription factors as MAPK targets provides an important resource for understanding ETS proteins as mediators of MAPK signaling. This is emphasized by the difference in rank order of ERG and ETS1, which allows these factors to have distinct roles based on the level of RAS/ERK signaling present in the cell.
Benanti,2015 (25860613) Benanti EL, Nguyen CM, Welch MD "Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility." Cell 2015 Apr 11
Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection.
Schulze,2015 (25850860) Schulze J, Kwiatkowski M, Borner J, Schluter H, Bruchhaus I, Burmester T, Spielmann T, Pick C "The Plasmodium falciparum exportome contains non-canonical PEXEL/HT proteins." Mol Microbiol 2015 Jul
The pathogenicity of Plasmodium falciparum is partly due to parasite-induced host cell modifications. These modifications are facilitated by exported P. falciparum proteins, collectively referred to as the exportome. Export of several hundred proteins is mediated by the PEXEL/HT, a protease cleavage site. The PEXEL/HT is usually comprised of five amino acids, of which R at position 1, L at position 3 and E, D or Q at position 5 are conserved and important for export. Non-canonical PEXEL/HTs with K or H at position 1 and/or I at position 3 are presently considered non-functional. Here, we show that non-canonical PEXEL/HT proteins are overrepresented in P. falciparum and other Plasmodium species. Furthermore, we show that non-canonical PEXEL/HTs can be cleaved and can promote export in both a REX3 and a GBP reporter, but not in a KAHRP reporter, indicating that non-canonical PEXEL/HTs are functional in concert with a supportive sequence environment. We then selected P. falciparum proteins with a non-canonical PEXEL/HT and show that some of these proteins are exported and that their export depends on non-canonical PEXEL/HTs. We conclude that PEXEL/HT plasticity is higher than appreciated and that non-canonical PEXEL/HT proteins cannot categorically be excluded from Plasmodium exportome predictions.
Brown,2015 (25833379) Brown JS, Jackson SP "Ubiquitylation, neddylation and the DNA damage response." Open Biol 2015 Apr 02
Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.
Nie,2015 (25752541) Nie J, Xu C, Jin J, Aka JA, Tempel W, Nguyen V, You L, Weist R, Min J, Pawson T, Yang XJ "Ankyrin repeats of ANKRA2 recognize a PxLPxL motif on the 3M syndrome protein CCDC8." Structure 2015 Apr 12
Peptide motifs are often used for protein-protein interactions. We have recently demonstrated that ankyrin repeats of ANKRA2 and the paralogous bare lymphocyte syndrome transcription factor RFXANK recognize PxLPxL/I motifs shared by megalin, three histone deacetylases, and RFX5. We show here that that CCDC8 is a major partner of ANKRA2 but not RFXANK in cells. The CCDC8 gene is mutated in 3M syndrome, a short-stature disorder with additional facial and skeletal abnormalities. Two other genes mutated in this syndrome encode CUL7 and OBSL1. While CUL7 is a ubiquitin ligase and OBSL1 associates with the cytoskeleton, little is known about CCDC8. Binding and structural analyses reveal that the ankyrin repeats of ANKRA2 recognize a PxLPxL motif at the C-terminal region of CCDC8. The N-terminal part interacts with OBSL1 to form a CUL7 ligase complex. These results link ANKRA2 unexpectedly to 3M syndrome and suggest novel regulatory mechanisms for histone deacetylases and RFX7.
Cairns,2015 (25742493) Cairns J, Peng Y, Yee VC, Lou Z, Wang L "Bora downregulation results in radioresistance by promoting repair of double strand breaks." PLoS One 2015 Mar 06
Following DNA double-strand breaks cells activate several DNA-damage response protein kinases, which then trigger histone H2AX phosphorylation and the accumulation of proteins such as MDC1, p53-binding protein 1, and breast cancer gene 1 at the damage site to promote DNA double-strand breaks repair. We identified a novel biomarker, Bora (previously called C13orf34), that is associated with radiosensitivity. In the current study, we set out to investigate how Bora might be involved in response to irradiation. We found a novel function of Bora in DNA damage repair response. Bora down-regulation increased colony formation in cells exposed to irradiation. This increased resistance to irradiation in Bora-deficient cells is likely due to a faster rate of double-strand breaks repair. After irradiation, Bora-knockdown cells displayed increased G2-M cell cycle arrest and increased Chk2 phosphorylation. Furthermore, Bora specifically interacted with the tandem breast cancer gene 1 C-terminal domain of MDC1 in a phosphorylation dependent manner, and overexpression of Bora could abolish irradiation induced MDC1 foci formation. In summary, Bora may play a significant role in radiosensitivity through the regulation of MDC1 and DNA repair.
Alexa,2015 (25730857) Alexa A, Gogl G, Glatz G, Garai A, Zeke A, Varga J, Dudas E, Jeszenoi N, Bodor A, Hetenyi C, Remenyi A "Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex." Proc Natl Acad Sci U S A 2015 Mar 04
Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase-kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK-->MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 "docking" groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they "readjust," whereas generic kinase domain surface contacts bring them into a catalytically competent state.
Leite,2015 (25681743) Leite F, Way M "The role of signalling and the cytoskeleton during Vaccinia Virus egress." Virus Res 2015 Nov 02
Viruses are obligate intracellular parasites that are critically dependent on their hosts to replicate and generate new progeny. To achieve this goal, viruses have evolved numerous elegant strategies to subvert and utilise the different cellular machineries and processes of their unwilling hosts. Moreover, they often accomplish this feat with a surprisingly limited number of proteins. Among the different systems of the cell, the cytoskeleton is often one of the first to be hijacked as it provides a convenient transport system for viruses to reach their site of replication with relative ease. At the latter stages of their replication cycle, the cytoskeleton also provides an efficient means for newly assembled viral progeny to reach the plasma membrane and leave the infected cell. In this review we discuss how Vaccinia virus takes advantage of the microtubule and actin cytoskeletons of its host to promote the spread of infection into neighboring cells. In particular, we highlight how analysis of actin-based motility of Vaccinia has provided unprecedented insights into how a phosphotyrosine-based signalling network is assembled and functions to stimulate Arp2/3 complex-dependent actin polymerization. We also suggest that the formin FHOD1 promotes actin-based motility of the virus by capping the fast growing ends of actin filaments rather than directly promoting filament assembly. We have come a long way since 1976, when electron micrographs of vaccinia-infected cells implicated the actin cytoskeleton in promoting viral spread. Nevertheless, there are still many unanswered questions concerning the role of signalling and the host cytoskeleton in promoting viral spread and pathogenesis.
Di Fiore,2015 (25669885) Di Fiore B, Davey NE, Hagting A, Izawa D, Mansfeld J, Gibson TJ, Pines J "The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators." Dev Cell 2015 Feb 11
The anaphase-promoting complex or cyclosome (APC/C) is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the spindle assembly checkpoint (SAC). How the APC/C recognizes its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in cyclin A, BUBR1, BUB1, and Acm1, and we show that it binds to the APC/C coactivator CDC20. The ABBA motif in cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC.
Roskoski R,2015 (25662515) Roskoski R Jr "Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors." Pharmacol Res 2015 Apr 04
The physiological Src proto-oncogene is a protein-tyrosine kinase that plays key roles in cell growth, division, migration, and survival signaling pathways. From the N- to C-terminus, Src contains a unique domain, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a regulatory tail. The chief phosphorylation sites of human Src include an activating pTyr419 that results from phosphorylation in the kinase domain by an adjacent Src molecule and an inhibitory pTyr530 in the regulatory tail that results from phosphorylation by C-terminal Src kinase (Csk) or Chk (Csk homologous kinase). The oncogenic Rous sarcoma viral protein lacks the equivalent of Tyr530 and is constitutively activated. Inactive Src is stabilized by SH2 and SH3 domains on the rear of the kinase domain where they form an immobilizing and inhibitory clamp. Protein kinases including Src contain hydrophobic regulatory and catalytic spines and collateral shell residues that are required to assemble the active enzyme. In the inactive enzyme, the regulatory spine contains a kink or a discontinuity with a structure that is incompatible with catalysis. The conversion of inactive to active Src is accompanied by electrostatic exchanges involving the breaking and making of distinct sets of kinase domain salt bridges and hydrogen bonds. Src-catalyzed protein phosphorylation requires the participation of two Mg(2+) ions. Although nearly all protein kinases possess a common K/E/D/D signature, each enzyme exhibits its unique variations of the protein-kinase reaction template. Bosutinib, dasatinib, and ponatinib are Src/multikinase inhibitors that are approved by the FDA for the treatment of chronic myelogenous leukemia and vandetanib is approved for the treatment of medullary thyroid cancer. The Src and BCR-Abl inhibitors saracatinib and AZD0424, along with the previous four drugs, are in clinical trials for a variety of solid tumors including breast and lung cancers. Both ATP and targeted therapeutic Src protein kinase inhibitors such as dasatinib and ponatinib make hydrophobic contacts with catalytic spine residues and form hydrogen bonds with hinge residues connecting the small and large kinase lobes.
Baldeck,2015 (25662213) Baldeck N, Janel-Bintz R, Wagner J, Tissier A, Fuchs RP, Burkovics P, Haracska L, Despras E, Bichara M, Chatton B, Cordonnier AM "FF483-484 motif of human Poleta mediates its interaction with the POLD2 subunit of Poldelta and contributes to DNA damage tolerance." Nucleic Acids Res 2015 Feb 27
Switching between replicative and translesion synthesis (TLS) DNA polymerases are crucial events for the completion of genomic DNA synthesis when the replication machinery encounters lesions in the DNA template. In eukaryotes, the translesional DNA polymerase eta (Poleta) plays a central role for accurate bypass of cyclobutane pyrimidine dimers, the predominant DNA lesions induced by ultraviolet irradiation. Poleta deficiency is responsible for a variant form of the Xeroderma pigmentosum (XPV) syndrome, characterized by a predisposition to skin cancer. Here, we show that the FF483-484 amino acids in the human Poleta (designated F1 motif) are necessary for the interaction of this TLS polymerase with POLD2, the B subunit of the replicative DNA polymerase delta, both in vitro and in vivo. Mutating this motif impairs Poleta function in the bypass of both an N-2-acetylaminofluorene adduct and a TT-CPD lesion in cellular extracts. By complementing XPV cells with different forms of Poleta, we show that the F1 motif contributes to the progression of DNA synthesis and to the cell survival after UV irradiation. We propose that the integrity of the F1 motif of Poleta, necessary for the Poleta/POLD2 interaction, is required for the establishment of an efficient TLS complex.
Panas,2015 (25658430) Panas MD, Schulte T, Thaa B, Sandalova T, Kedersha N, Achour A, McInerney GM "Viral and cellular proteins containing FGDF motifs bind G3BP to block stress granule formation." PLoS Pathog 2015 Feb 09
The Ras-GAP SH3 domain-binding proteins (G3BP) are essential regulators of the formation of stress granules (SG), cytosolic aggregates of proteins and RNA that are induced upon cellular stress, such as virus infection. Many viruses, including Semliki Forest virus (SFV), block SG induction by targeting G3BP. In this work, we demonstrate that the G3BP-binding motif of SFV nsP3 consists of two FGDF motifs, in which both phenylalanine and the glycine residue are essential for binding. In addition, we show that binding of the cellular G3BP-binding partner USP10 is also mediated by an FGDF motif. Overexpression of wt USP10, but not a mutant lacking the FGDF-motif, blocks SG assembly. Further, we identified FGDF-mediated G3BP binding site in herpes simplex virus (HSV) protein ICP8, and show that ICP8 binding to G3BP also inhibits SG formation, which is a novel function of HSV ICP8. We present a model of the three-dimensional structure of G3BP bound to an FGDF-containing peptide, likely representing a binding mode shared by many proteins to target G3BP.
Sun,2015 (25640033) Sun Y, Stine JM, Atwater DZ, Sharmin A, Ross JB, Briknarova K "Structural and functional characterization of the acidic region from the RIZ tumor suppressor." Biochemistry 2015 Feb 17
RIZ (retinoblastoma protein-interacting zinc finger protein), also denoted PRDM2, is a transcriptional regulator and tumor suppressor. It was initially identified because of its ability to interact with another well-established tumor suppressor, the retinoblastoma protein (Rb). A short motif, IRCDE, in the acidic region (AR) of RIZ was reported to play an important role in the interaction with the pocket domain of Rb. The IRCDE motif is similar to a consensus Rb-binding sequence LXCXE (where X denotes any amino acid) that is found in several viral Rb-inactivating oncoproteins. To improve our understanding of the molecular basis of binding of Rb to RIZ, we investigated the interaction between purified recombinant AR and the pocket domain of Rb using nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, and fluorescence anisotropy experiments. We show that AR is intrinsically disordered and that it binds the pocket domain with submicromolar affinity. We also demonstrate that the interaction between AR and the pocket domain is mediated primarily by the short stretch of residues containing the IRCDE motif and that the contribution of other parts of AR to the interaction with the pocket domain is minimal. Overall, our data provide clear evidence that RIZ is one of the few cellular proteins that can interact directly with the LXCXE-binding cleft on Rb.
Liu,2015 (25636800) Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ "Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation." Science 2015 Mar 13
During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.
Hantan,2014 (25612670) Hantan D, Yamamoto Y, Sakisaka T "VAP-B binds to Rab3GAP1 at the ER: its implication in nuclear envelope formation through the ER-Golgi intermediate compartment." Kobe J Med Sci 2014 Oct 1
The vesicle-associated membrane protein-associated protein B (VAP-B) is a tail-anchored protein in the endoplasmic reticulum (ER). VAP-B functions as an adaptor protein to recruit target proteins to the ER and execute various cellular functions, lipid transport, membrane traffic, ER stress etc. Recently, VAP-B has been shown to regulate the nuclear envelope protein transport through the ER-Golgi intermediate compartment (ERGIC). We showed here that VAP-B directly binds to Rab3 GTPase activating protein 1 (Rab3GAP1), the catalytic subunit of Rab3GAP, through the two phenylalanines (FF) in an acidic tract (FFAT)-like motif of Rab3GAP1. Rab3GAP consists of two subunits, the catalytic subunit Rab3GAP1 and the non-catalytic subunit Rab3GAP2. VAP-B binds to Rab3GAP1 even in the Rab3GAP1/2 heterodimer complex. A single amino acid substitution of the FFAT-like motif reduces the binding activity of Rab3GAP1 to VAP-B. On the other hand, the FFAT-like motif mutation increases the binding activity of Rab3GAP1 to ERGIC-53, the ERGIC marker protein. Overexpression of Rab3GAP1 affects nuclear envelope formation more potently than that of Rab3GAP1 FFAT-like motif mutant. These results suggest that the binding of VAP-B to Rab3GAP1 is implicated in the regulation of nuclear envelope formation through ERGIC.
Shin,2015 (25591003) Shin JS, Ha JH, Lee DH, Ryu KS, Bae KH, Park BC, Park SG, Yi GS, Chi SW "Structural convergence of unstructured p53 family transactivation domains in MDM2 recognition." Cell Cycle 2015 Feb 21
The p53, p63, and p73 proteins belong to the p53 family of transcription factors, which play key roles in tumor suppression. Although the transactivation domains (TADs) of the p53 family are intrinsically disordered, these domains are commonly involved in the regulatory interactions with mouse double minute 2 (MDM2). In this study, we determined the solution structure of the p73TAD peptide in complex with MDM2 using NMR spectroscopy and biophysically characterized the interactions between the p53 family TAD peptides and MDM2. In combination with mutagenesis data, the complex structures revealed remarkably close mimicry of the MDM2 recognition mechanism among the p53 family TADs. Upon binding with MDM2, the intrinsically disordered p73TAD and p63TAD peptides adopt an amphipathic alpha-helical conformation, which is similar to the conformation of p53TAD, although the alpha-helical content induced by MDM2 binding varies. With isothermal titration calorimetry (ITC) and circular dichroism (CD) data, our biophysical characterization showed that p73TAD resembles p53TAD more closely than p63TAD in terms of helical stability, MDM2 binding affinity, and phosphorylation effects on MDM2 binding. Therefore, our structural information may be useful in establishing alternative anticancer strategies that exploit the activation of the p73 pathway against human tumors bearing p53 mutations.
Losh,2015 (25589546) Losh JS, King AK, Bakelar J, Taylor L, Loomis J, Rosenzweig JA, Johnson SJ, van Hoof A "Interaction between the RNA-dependent ATPase and poly(A) polymerase subunits of the TRAMP complex is mediated by short peptides and important for snoRNA processing." Nucleic Acids Res 2015 Apr 02
The RNA exosome is one of the main 3' to 5' exoribonucleases in eukaryotic cells. Although it is responsible for degradation or processing of a wide variety of substrate RNAs, it is very specific and distinguishes between substrate and non-substrate RNAs as well as between substrates that need to be 3' processed and those that need to be completely degraded. This specificity does not appear to be determined by the exosome itself but rather by about a dozen other proteins. Four of these exosome cofactors have enzymatic activity, namely, the nuclear RNA-dependent ATPase Mtr4, its cytoplasmic paralog Ski2 and the nuclear non-canonical poly(A) polymerases, Trf4 and Trf5. Mtr4 and either Trf4 or Trf5 assemble into a TRAMP complex. However, how these enzymes assemble into a TRAMP complex and the functional consequences of TRAMP complex assembly remain unknown. Here, we identify an important interaction site between Mtr4 and Trf5, and show that disrupting the Mtr4/Trf interaction disrupts specific TRAMP and exosome functions, including snoRNA processing.
Doerflinger,2015 (25565426) Doerflinger M, Glab JA, Puthalakath H "BH3-only proteins: a 20-year stock-take." FEBS J 2015 Mar 20
BH3-only proteins are the sentinels of cellular stress, and their activation commits cells to apoptosis. Since the discovery of the first BH3-only protein BAD almost 20 years ago, at least seven more BH3-only proteins have been identified in mammals. They are regulated by a variety of environmental stimuli or by developmental cues, and play a crucial role in cellular homeostasis. Some are considered to be tumor suppressors, and also play a significant role in other pathologies. Their non-apoptotic functions are controversial, but there is broad consensus emerging regarding their role in apoptosis, which may help in designing better therapeutic agents for treating a variety of human diseases.
Wilson,2014 (25516977) Wilson MH, Holzbaur EL "Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells." Development 2014 Dec 17
During skeletal muscle development, nuclei move dynamically through myotubes in a microtubule-dependent manner, driven by the microtubule motor protein kinesin-1. Loss of kinesin-1 leads to improperly positioned nuclei in culture and in vivo. Two models have been proposed to explain how kinesin-1 functions to move nuclei in myotubes. In the cargo model, kinesin-1 acts directly from the surface of the nucleus, whereas in an alternative model, kinesin-1 moves nuclei indirectly by sliding anti-parallel microtubules. Here, we test the hypothesis that an ensemble of Kif5B motors acts from the nuclear envelope to distribute nuclei throughout the length of syncytial myotubes. First, using an inducible dimerization system, we show that controlled recruitment of truncated, constitutively active kinesin-1 motors to the nuclear envelope is sufficient to prevent the nuclear aggregation resulting from depletion of endogenous kinesin-1. Second, we identify a conserved kinesin light chain (KLC)-binding motif in the nuclear envelope proteins nesprin-1 and nesprin-2, and show that recruitment of the motor complex to the nucleus via this LEWD motif is essential for nuclear distribution. Together, our findings demonstrate that the nucleus is a kinesin-1 cargo in myotubes and that nesprins function as nuclear cargo adaptors. The importance of achieving and maintaining proper nuclear position is not restricted to muscle fibers, suggesting that the nesprin-dependent recruitment of kinesin-1 to the nuclear envelope through the interaction of a conserved LEWD motif with kinesin light chain might be a general mechanism for cell-type-specific nuclear positioning during development.
Diaz-Martinez,2015 (25505175) Diaz-Martinez LA, Tian W, Li B, Warrington R, Jia L, Brautigam CA, Luo X, Yu H "The Cdc20-binding Phe box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis." J Biol Chem 2015 Jan 27
The spindle checkpoint ensures accurate chromosome segregation by monitoring kinetochore-microtubule attachment. Unattached or tensionless kinetochores activate the checkpoint and enhance the production of the mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20. MCC is a critical checkpoint inhibitor of the anaphase-promoting complex/cyclosome, a ubiquitin ligase required for anaphase onset. The N-terminal region of BubR1 binds to both Cdc20 and Mad2, thus nucleating MCC formation. The middle region of human BubR1 (BubR1M) also interacts with Cdc20, but the nature and function of this interaction are not understood. Here we identify two critical motifs within BubR1M that contribute to Cdc20 binding and anaphase-promoting complex/cyclosome inhibition: a destruction box (D box) and a phenylalanine-containing motif termed the Phe box. A BubR1 mutant lacking these motifs is defective in MCC maintenance in mitotic human cells but is capable of supporting spindle-checkpoint function. Thus, the BubR1M-Cdc20 interaction indirectly contributes to MCC homeostasis. Its apparent dispensability in the spindle checkpoint might be due to functional duality or redundant, competing mechanisms.
Cappadocia,2015 (25497731) Cappadocia L, Mascle XH, Bourdeau V, Tremblay-Belzile S, Chaker-Margot M, Lussier-Price M, Wada J, Sakaguchi K, Aubry M, Ferbeyre G, Omichinski JG "Structural and Functional Characterization of the Phosphorylation-Dependent Interaction between PML and SUMO1." Structure 2015 Jan 08
PML and several other proteins localizing in PML-nuclear bodies (PML-NB) contain phosphoSIMs (SUMO-interacting motifs), and phosphorylation of this motif plays a key role in their interaction with SUMO family proteins. We examined the role that phosphorylation plays in the binding of the phosphoSIMs of PML and Daxx to SUMO1 at the atomic level. The crystal structures of SUMO1 bound to unphosphorylated and tetraphosphorylated PML-SIM peptides indicate that three phosphoserines directly contact specific positively charged residues of SUMO1. Surprisingly, the crystal structure of SUMO1 bound to a diphosphorylated Daxx-SIM peptide indicate that the hydrophobic residues of the phosphoSIM bind in a manner similar to that seen with PML, but important differences are observed when comparing the phosphorylated residues. Together, the results provide an atomic level description of how specific acetylation patterns within different SUMO family proteins can work together with phosphorylation of phosphoSIM's regions of target proteins to regulate binding specificity.
Akamatsu,2015 (25472445) Akamatsu R, Ishida-Kitagawa N, Aoyama T, Oka C, Kawaichi M "BNIP-2 binds phosphatidylserine, localizes to vesicles, and is transported by kinesin-1." Genes Cells 2015 Jan 28
BNIP-2 shows high homology with the Cayman ataxia protein, caytaxin, which functions as a kinesin-1 adapter bridging cargos and kinesin light chains (KLCs). BNIP-2 is known to induce cell shape changes when over-expressed in culture cells, but its physiological functions are mostly unknown. BNIP-2 interacts with KLC through the conserved WED motif in the N-terminal region of BNIP-2. Interaction with KLC and transportation by kinesin-1 are essential for over-expressed BNIP-2 to elongate cells and induce cellular processes. Endogenous BNIP-2 localizes to the Golgi apparatus, early and recycling endosomes and mitochondria, aligned with microtubules, and moves at a speed compatible with kinesin-1 transportation. The CRAL-TRIO domain of BNIP-2 specifically interacts with phosphatidylserine, and the vesicular localization of BNIP-2 requires interaction with this phospholipid. BNIP-2 mutants which do not bind phosphatidylserine do not induce morphological changes in cells. These data show that similar to caytaxin, BNIP-2 is a kinesin-1 adapter involved in vesicular transportation in the cytoplasm and that association with cargos depends on interaction of the CRAL-TRIO domain with membrane phosphatidylserine.
Garcia,2014 (25461409) Garcia JD, Dewey EB, Johnston CA "Dishevelled binds the Discs large 'Hook' domain to activate GukHolder-dependent spindle positioning in Drosophila." PLoS One 2014 Dec 03
Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh), a key regulator of planar cell polarity, and Discs large (Dlg), a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced "I3-insert" of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH). These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.
Malinauskas,2014 (25460271) Malinauskas T, Jones EY "Extracellular modulators of Wnt signalling." Curr Opin Struct Biol 2014 Dec 16
Wnt morphogens are secreted signalling proteins that play leading roles in embryogenesis and tissue homeostasis throughout life. Wnt signalling is controlled by multiple mechanisms, including posttranslational modification of Wnts, antagonist binding (to Wnts or their receptors), and regulation of the availability of Wnt receptors. Recent crystallographic, structure-guided biophysical and cell-based studies have advanced our understanding of how Wnt signalling is regulated at the cell surface. Structures include Wnt in complex with the cysteine-rich domain (CRD) of Frizzled, extracellular fragments of Wnt co-receptor LRP6, LRP6-binding antagonists Dickkopf and Sclerostin, antagonists 5T4/WAIF1 and Wnt inhibitory factor 1 (WIF-1), as well as Frizzled-ubiquitin ligases ZNRF3/RNF43 (in isolation and in complexes with Wnt signalling promoters R-spondins and LGR5). We review recent discoveries and remaining questions.
Arisue,2015 (25451217) Arisue N, Hashimoto T "Phylogeny and evolution of apicoplasts and apicomplexan parasites." Parasitol Int 2015 Jun
The phylum Apicomplexa includes many parasitic genera of medical and veterinary importance including Plasmodium (causative agent of malaria), Toxoplasma (toxoplasmosis), and Babesia (babesiosis). Most of the apicomplexan parasites possess a unique, essential organelle, the apicoplast, which is a plastid without photosynthetic ability. Although the apicoplast is considered to have evolved through secondary endosymbiosis of a red alga into the common ancestral cell of apicomplexans, its evolutionary history has been under debate until recently. The apicoplast has a genome around 30-40 kb in length. Repertoire and arrangement of the apicoplast genome-encoded genes differ among apicomplexan genera, although within the genus Plasmodium these are almost conserved. Genes in the apicoplast genome may be useful markers for Plasmodium phylogeny, because these are single copy (except for the inverted repeat region) and may have more phylogenetic signal than the mitochondrial genome that have been most commonly used for Plasmodium phylogeny. This review describes recent studies concerning the evolutionary origin of the apicoplast, presents evolutionary comparison of the primary structures of apicoplast genomes from apicomplexan parasites, and summarizes recent findings of malaria phylogeny based on apicoplast genome-encoded genes.
Fang,2015 (25380116) Fang P, Xu W, Li D, Zhao X, Dai J, Wang Z, Yan X, Qin M, Zhang Y, Xu C, Wang L, Qiao Z "A novel acrosomal protein, IQCF1, involved in sperm capacitation and the acrosome reaction." Andrology 2015 Mar
On the basis of the unknown tags in the mature human sperm serial analysis of gene expression library constructed by our laboratory, some transcripts were cloned, including Iqcf1 (IQ motif containing F1). To investigate the function of sperm-retained Iqcf1 in spermatogenesis and fertilization of mice, we investigated the spatial and temporal expression of IQCF1. By using the (transcription activator-like effector nuclease) strategy, Iqcf1-knockout mice were produced, and the phenotypes of the Iqcf1(-/-) mice were analyzed. The results showed that IQCF1 was localized in the acrosome of spermatozoa and spermatids; the expression of IQCF1 in testes was associated with spermatogenic capacity. The Iqcf1(-/-) mice were significantly less fertile than the wild-type mice (p = 0.0057) because of reduced sperm motility (p = 0.0094) and the acrosome reaction (AR) (p = 0.0093). In spermatozoa, IQCF1 interacted with calmodulin (CaM) and possibly participated in the tyrosine phosphorylation of sperm proteins during capacitation. In conclusion, a newly identified acrosomal protein, IQCF1, is closely related to sperm capacitation and AR; in particular, it is involved in tyrosine phosphorylation of sperm proteins through interaction with CaM. Research into the function of IQCF1 during fertilization could facilitate the investigation of the molecular mechanism of capacitation, which is unclear.
Franchin,2014 (25338102) Franchin C, Cesaro L, Pinna LA, Arrigoni G, Salvi M "Identification of the PLK2-dependent phosphopeptidome by quantitative proteomics [corrected]." PLoS One 2014 Oct 23
Polo-like kinase 2 (PLK2) has been recently recognized as the major enzyme responsible for phosphorylation of alpha-synuclein at S129 in vitro and in vivo, suggesting that this kinase may play a key role in the pathogenesis of Parkinson's disease and other synucleinopathies. Moreover PLK2 seems to be implicated in cell division, oncogenesis, and synaptic regulation of the brain. However little is known about the phosphoproteome generated by PLK2 and, consequently the overall impact of PLK2 on cellular signaling. To fill this gap we exploited an approach based on in vitro kinase assay and quantitative phosphoproteomics. A proteome-derived peptide library obtained by digestion of undifferentiated human neuroblastoma cell line was exhaustively dephosphorylated by lambda phosphatase followed by incubation with or without PLK2 recombinant kinase. Stable isotope labeling based quantitative phosphoproteomics was applied to identify the phosphosites generated by PLK2. A total of 98 unique PLK2-dependent phosphosites from 89 proteins were identified by LC-MS/MS. Analysis of the primary structure of the identified phosphosites allowed the detailed definition of the kinase specificity and the compilation of a list of potential PLK2 targets among those retrieved in PhosphositePlus, a curated database of in cell/vivo phosphorylation sites.
Schuch,2014 (25319414) Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E "The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase." EMBO J 2014 Dec 02
The exosome is a conserved multi-subunit ribonuclease complex that functions in 3' end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10-subunit core complex of the exosome (Exo-10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo-10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N-terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N-terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C-terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6-Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome.
Chen,2014 (25301550) Chen WK, Yeap YY, Bogoyevitch MA "The JNK1/JNK3 interactome--contributions by the JNK3 unique N-terminus and JNK common docking site residues." Biochem Biophys Res Commun 2014 Dec 19
The c-Jun N-terminal Kinases (JNKs) play important roles in cell responses to stress or growth factor stimulation. The JNK1alpha1 isoform shares >90% identity with a predominantly neuronal JNK3alpha1 isoform, but JNK3alpha1 also includes a distinctive 38 amino acid N-terminal sequence. To address the outstanding question of the potential for these JNK isoforms to have different binding partners that mediate different biological actions, the work presented here refined the yeast two-hybrid approach to identify and categorize binding partners for JNK1alpha1 and JNK3alpha1. Specifically, site-directed mutagenesis of the JNK1alpha1 common docking (CD) domain that mediates typical JNK-binding domain (JBD)-dependent interactions, truncation of the distinctive JNK3 N-terminal domain (i.e. DeltaN JNK3alpha1), and interaction evaluation in the yeast two-hybrid system defined the interacting partners as either JNK1-specific interactors (ATF7, FUS, KCNE4, PIAS1, SHANK1, TKT), typical JBD-dependent interactors shared by JNK1alpha1 and JNK3alpha1 (AKAP6, BMPR2, EEF1A1, GFAP, GRIP2, GTF2F1, HDAC2, MAP1B, MYO9B, PTPN2, RABGAP1, RUSC2, SUMO1, SYPL1, TOPBP1, ZNF668), or JNK3-specific partners (ATXN1, NNAT, PTGDS) dependent on interaction with the JNK3 N-terminal extension. The interacting partners ATF7, AKAP6, and ATXN1 were explored further as representatives of these different classes. Two potential JBDs were identified in ATF7 as important for its interaction with JNK1alpha1, but additionally an interaction between ATF7 and DeltaN JNK3alpha1 was shown to be JBD-dependent, suggesting that the JNK3alpha1 N-terminus prevents interaction with some proteins. For the shared partner AKAP6, one of the multiple potential JBDs predicted by sequence analysis was important for the AKAP6-JNK interaction in the yeast screening system as well as in mammalian cells. Finally, the ATXN1-JNK3alpha1 interaction was dependent on the JNK3alpha1 N-terminus in a mammalian cell context. These studies therefore highlight a diversity of potential JNK-interacting partners with both JBD-dependent as well as JBD-independent modes of interaction.
Lu,2014 (25287299) Lu D, Hsiao JY, Davey NE, Van Voorhis VA, Foster SA, Tang C, Morgan DO "Multiple mechanisms determine the order of APC/C substrate degradation in mitosis." J Cell Biol 2014 Oct 14
The ubiquitin protein ligase anaphase-promoting complex or cyclosome (APC/C) controls mitosis by promoting ordered degradation of securin, cyclins, and other proteins. The mechanisms underlying the timing of APC/C substrate degradation are poorly understood. We explored these mechanisms using quantitative fluorescence microscopy of GFP-tagged APC/C(Cdc20) substrates in living budding yeast cells. Degradation of the S cyclin, Clb5, begins early in mitosis, followed 6 min later by the degradation of securin and Dbf4. Anaphase begins when less than half of securin is degraded. The spindle assembly checkpoint delays the onset of Clb5 degradation but does not influence securin degradation. Early Clb5 degradation depends on its interaction with the Cdk1-Cks1 complex and the presence of a Cdc20-binding "ABBA motif" in its N-terminal region. The degradation of securin and Dbf4 is delayed by Cdk1-dependent phosphorylation near their Cdc20-binding sites. Thus, a remarkably diverse array of mechanisms generates robust ordering of APC/C(Cdc20) substrate destruction.
Dzhindzhev,2014 (25264260) Dzhindzhev NS, Tzolovsky G, Lipinszki Z, Schneider S, Lattao R, Fu J, Debski J, Dadlez M, Glover DM "Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation." Curr Biol 2014 Dec 02
Centrioles are 9-fold symmetrical structures at the core of centrosomes and base of cilia whose dysfunction has been linked to a wide range of inherited diseases and cancer. Their duplication is regulated by a protein kinase of conserved structure, the C. elegans ZYG-1 or its Polo-like kinase 4 (Plk4) counterpart in other organisms. Although Plk4's centriolar partners and mechanisms that regulate its stability are known, its crucial substrates for centriole duplication have never been identified. Here we show that Drosophila Plk4 phosphorylates four conserved serines in the STAN motif of the core centriole protein Ana2 to enable it to bind and recruit its Sas6 partner. Ana2 and Sas6 normally load onto both mother and daughter centrioles immediately after their disengagement toward the end of mitosis to seed procentriole formation. Nonphosphorylatable Ana2 still localizes to the centriole but can no longer recruit Sas6 and centriole duplication fails. Thus, following centriole disengagement, recruitment of Ana2 and its phosphorylation by Plk4 are the earliest known events in centriole duplication to recruit Sas6 and thereby establish the architecture of the new procentriole engaged with its parent.
Cumming,2015 (25255283) Cumming JG, Debreczeni JE, Edfeldt F, Evertsson E, Harrison M, Holdgate GA, James MJ, Lamont SG, Oldham K, Sullivan JE, Wells SL "Discovery and characterization of MAPK-activated protein kinase-2 prevention of activation inhibitors." J Med Chem 2015 Jan 09
Two structurally distinct series of novel, MAPK-activated kinase-2 prevention of activation inhibitors have been discovered by high throughput screening. Preliminary structure-activity relationship (SAR) studies revealed substructural features that influence the selective inhibition of the activation by p38alpha of the downstream kinase MK2 in preference to an alternative substrate, MSK1. Enzyme kinetics, surface plasmon resonance (SPR), 2D protein NMR, and X-ray crystallography were used to determine the binding mode and the molecular mechanism of action. The compounds bind competitively to the ATP binding site of p38alpha but unexpectedly with higher affinity in the p38alpha-MK2 complex compared with p38alpha alone. This observation is hypothesized to be the origin of the substrate selectivity. The two lead series identified are suitable for further investigation for their potential to treat chronic inflammatory diseases with improved tolerability over previously studied p38alpha inhibitors.
Wang,2014 (25232683) Wang C, Chung BC, Yan H, Wang HG, Lee SY, Pitt GS "Structural analyses of Ca(2)(+)/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation." Nat Commun 2014 Sep 18
Ca(2+) regulates voltage-gated Na(+) (NaV) channels, and perturbed Ca(2+) regulation of NaV function is associated with epilepsy syndromes, autism and cardiac arrhythmias. Understanding the disease mechanisms, however, has been hindered by a lack of structural information and competing models for how Ca(2+) affects NaV channel function. Here we report the crystal structures of two ternary complexes of a human NaV cytosolic C-terminal domain (CTD), a fibroblast growth factor homologous factor and Ca(2+)/calmodulin (Ca(2+)/CaM). These structures rule out direct binding of Ca(2+) to the NaV CTD and uncover new contacts between CaM and the NaV CTD. Probing these new contacts with biochemical and functional experiments allows us to propose a mechanism by which Ca(2+) could regulate NaV channels. Further, our model provides hints towards understanding the molecular basis of the neurologic disorders and cardiac arrhythmias caused by NaV channel mutations.
Hendriks,2014 (25218447) Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC "Uncovering global SUMOylation signaling networks in a site-specific manner." Nat Struct Mol Biol 2014 Oct 08
SUMOylation is a reversible post-translational modification essential for genome stability. Using high-resolution MS, we have studied global SUMOylation in human cells in a site-specific manner, identifying a total of >4,300 SUMOylation sites in >1,600 proteins. To our knowledge, this is the first time that >1,000 SUMOylation sites have been identified under standard growth conditions. We quantitatively studied SUMOylation dynamics in response to SUMO protease inhibition, proteasome inhibition and heat shock. Many SUMOylated lysines have previously been reported to be ubiquitinated, acetylated or methylated, thus indicating cross-talk between SUMO and other post-translational modifications. We identified 70 phosphorylation and four acetylation events in proximity to SUMOylation sites, and we provide evidence for acetylation-dependent SUMOylation of endogenous histone H3. SUMOylation regulates target proteins involved in all nuclear processes including transcription, DNA repair, chromatin remodeling, precursor-mRNA splicing and ribosome assembly.
Falk,2014 (25175027) Falk S, Weir JR, Hentschel J, Reichelt P, Bonneau F, Conti E "The molecular architecture of the TRAMP complex reveals the organization and interplay of its two catalytic activities." Mol Cell 2014 Sep 20
The TRAMP complex is involved in the nuclear surveillance and turnover of noncoding RNAs and intergenic transcripts. TRAMP is associated with the nuclear exosome and consists of a poly(A)polymerase subcomplex (Trf4-Air2) and a helicase (Mtr4). We found that N-terminal low-complexity regions of Trf4 and Air2 bind Mtr4 in a cooperative manner. The 2.4 A resolution crystal structure of the corresponding ternary complex reveals how Trf4 and Air2 wrap around the DExH core of the helicase. Structure-based mutations on the DExH core impair binding to Trf4 and Air2, and also to Trf5 and Air1. The combination of structural, biochemical, and biophysical data suggests that the poly(A)polymerase core of Trf4-Air2 is positioned below the base of the helicase, where the unwound 3' end of an RNA substrate is expected to emerge. The results reveal conceptual similarities between the two major regulators of the exosome, the nuclear TRAMP and cytoplasmic Ski complexes.
Lampard,2014 (25172143) Lampard GR, Wengier DL, Bergmann DC "Manipulation of mitogen-activated protein kinase kinase signaling in the Arabidopsis stomatal lineage reveals motifs that contribute to protein localization and signaling specificity." Plant Cell 2014 Sep 26
When multiple mitogen-activated protein kinase (MAPK) components are recruited recurrently to transduce signals of different origins, and often opposing outcomes, mechanisms to enforce signaling specificity are of utmost importance. These mechanisms are largely uncharacterized in plant MAPK signaling networks. The Arabidopsis thaliana stomatal lineage was previously used to show that when rendered constitutively active, four MAPK kinases (MKKs), MKK4/5/7/9, are capable of perturbing stomatal development and that these kinases comprise two pairs, MKK4/5 and MKK7/9, with both overlapping and divergent functions. We characterized the contributions of specific structural domains of these four "stomatal" MKKs to MAPK signaling output and specificity both in vitro and in vivo within the three discrete cell types of the stomatal lineage. These results verify the influence of functional docking (D) domains of MKKs on MAPK signal output and identify novel regulatory functions for previously uncharacterized structures within the N termini of MKK4/5. Beyond this, we present a novel function of the D-domains of MKK7/9 in regulating the subcellular localization of these kinases. These results provide tools to broadly assess the extent to which these and additional motifs within MKKs function to regulate MAPK signal output throughout the plant.
Ernst,2014 (25158098) Ernst A, Appleton BA, Ivarsson Y, Zhang Y, Gfeller D, Wiesmann C, Sidhu SS "A structural portrait of the PDZ domain family." J Mol Biol 2014 Oct 23
PDZ (PSD-95/Discs-large/ZO1) domains are interaction modules that typically bind to specific C-terminal sequences of partner proteins and assemble signaling complexes in multicellular organisms. We have analyzed the existing database of PDZ domain structures in the context of a specificity tree based on binding specificities defined by peptide-phage binding selections. We have identified 16 structures of PDZ domains in complex with high-affinity ligands and have elucidated four additional structures to assemble a structural database that covers most of the branches of the PDZ specificity tree. A detailed comparison of the structures reveals features that are responsible for the diverse specificities across the PDZ domain family. Specificity differences can be explained by differences in PDZ residues that are in contact with the peptide ligands, but these contacts involve both side-chain and main-chain interactions. Most PDZ domains bind peptides in a canonical conformation in which the ligand main chain adopts an extended beta-strand conformation by interacting in an antiparallel fashion with a PDZ beta-strand. However, a subset of PDZ domains bind peptides with a bent main-chain conformation and the specificities of these non-canonical domains could not be explained based on canonical structures. Our analysis provides a structural portrait of the PDZ domain family, which serves as a guide in understanding the structural basis for the diverse specificities across the family.
Lu,2014 (25117710) Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, Lim E, Liu W, Bronson RT, Bowden M, Brock J, Krop IE, Dillon DA, Gygi SP, Mills GB, Richardson AL, Signoretti S, Yaffe MB, Kaelin WG Jr "Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor." Cancer Cell 2014 Aug 13
Oncoproteins and tumor suppressors antagonistically converge on critical nodes governing neoplastic growth, invasion, and metastasis. We discovered that phosphorylation of the ETS1 and ETS2 transcriptional oncoproteins at specific serine or threonine residues creates binding sites for the COP1 tumor suppressor protein, which is an ubiquitin ligase component, leading to their destruction. In the case of ETS1, however, phosphorylation of a neighboring tyrosine residue by Src family kinases disrupts COP1 binding, thereby stabilizing ETS1. Src-dependent accumulation of ETS1 in breast cancer cells promotes anchorage-independent growth in vitro and tumor growth in vivo. These findings expand the list of potential COP1 substrates to include proteins whose COP1-binding sites are subject to regulatory phosphorylation and provide insights into transformation by Src family kinases.
Impens,2014 (25114211) Impens F, Radoshevich L, Cossart P, Ribet D "Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli." Proc Natl Acad Sci U S A 2014 Aug 27
SUMOylation is an essential ubiquitin-like modification involved in important biological processes in eukaryotic cells. Identification of small ubiquitin-related modifier (SUMO)-conjugated residues in proteins is critical for understanding the role of SUMOylation but remains experimentally challenging. We have set up a powerful and high-throughput method combining quantitative proteomics and peptide immunocapture to map SUMOylation sites and have analyzed changes in SUMOylation in response to stimuli. With this technique we identified 295 SUMO1 and 167 SUMO2 sites on endogenous substrates of human cells. We further used this strategy to characterize changes in SUMOylation induced by listeriolysin O, a bacterial toxin that impairs the host cell SUMOylation machinery, and identified several classes of host proteins specifically deSUMOylated in response to this toxin. Our approach constitutes an unprecedented tool, broadly applicable to various SUMO-regulated cellular processes in health and disease.
Mitchell,2014 (25110014) Mitchell P "Exosome substrate targeting: the long and short of it." Biochem Soc Trans 2014 Aug
The exosome ribonuclease complex functions in both the limited trimming of the 3'-ends of nuclear substrates during RNA processing events and the complete destruction of nuclear and cytoplasmic RNAs. The two RNases of the eukaryotic exosome, Rrp44 (rRNA-processing protein 44) and Rrp6, are bound at either end of a catalytically inert cylindrical core. RNA substrates are threaded through the internal channel of the core to Rrp44 by RNA helicase components of the nuclear TRAMP complex (Trf4-Air2-Mtr4 polyadenylation complex) or the cytoplasmic Ski (superkiller) complex. Recent studies reveal that Rrp44 can also associate directly with substrates via channel-independent routes. Although the substrates of the exosome are known, it is not clear whether specific substrates are restricted to one or other pathway. Data currently available support the model that processed substrates are targeted directly to the catalytic subunits, whereas at least some substrates that are directed towards discard pathways must be threaded through the exosome core.
Tudek,2014 (25066235) Tudek A, Porrua O, Kabzinski T, Lidschreiber M, Kubicek K, Fortova A, Lacroute F, Vanacova S, Cramer P, Stefl R, Libri D "Molecular basis for coordinating transcription termination with noncoding RNA degradation." Mol Cell 2014 Aug 09
The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex.
Uyar,2014 (25057855) Uyar B, Weatheritt RJ, Dinkel H, Davey NE, Gibson TJ "Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer?" Mol Biosyst 2014 Aug 27
Disease mutations are traditionally thought to impair protein functionality by disrupting the folded globular structure of proteins. However, 22% of human disease mutations occur in natively unstructured segments of proteins known as intrinsically disordered regions (IDRs). This therefore implicates defective IDR functionality in various human diseases including cancer. The functionality of IDRs is partly attributable to short linear motifs (SLiMs), but it remains an open question how much defects in SLiMs contribute to human diseases. A proteome-wide comparison of the distribution of missense mutations from disease and non-disease mutation datasets revealed that, in IDRs, disease mutations are more likely to occur within SLiMs than neutral missense mutations. Moreover, compared to neutral missense mutations, disease mutations more frequently impact functionally important residues of SLiMs, cause changes in the physicochemical properties of SLiMs, and disrupt more SLiM-mediated interactions. Analysis of these mutations resulted in a comprehensive list of experimentally validated or predicted SLiMs disrupted in disease. Furthermore, this in-depth analysis suggests that 'prostate cancer pathway' is particularly enriched for proteins with disease-related SLiMs. The contribution of mutations in SLiMs to disease may currently appear small when compared to mutations in globular domains. However, our analysis of mutations in predicted SLiMs suggests that this contribution might be more substantial. Therefore, when analysing the functional impact of mutations on proteins, SLiMs in proteins should not be neglected. Our results suggest that an increased focus on SLiMs in the coming decades will improve our understanding of human diseases and aid in the development of targeted treatments.
Park,2014 (24998779) Park JY, Zhang F, Andreassen PR "PALB2: the hub of a network of tumor suppressors involved in DNA damage responses." Biochim Biophys Acta 2014 Aug 21
PALB2 was first identified as a partner of BRCA2 that mediates its recruitment to sites of DNA damage. PALB2 was subsequently found as a tumor suppressor gene. Inherited heterozygosity for this gene is associated with an increased risk of cancer of the breast and other sites. Additionally, biallelic mutation of PALB2 is linked to Fanconi anemia, which also has an increased risk of developing malignant disease. Recent work has identified numerous interactions of PALB2, suggesting that it functions in a network of proteins encoded by tumor suppressors. Notably, many of these tumor suppressors are related to the cellular response to DNA damage. The recruitment of PALB2 to DNA double-strand breaks at the head of this network is via a ubiquitin-dependent signaling pathway that involves the RAP80, Abraxas and BRCA1 tumor suppressors. Next, PALB2 interacts with BRCA2, which is a tumor suppressor, and with the RAD51 recombinase. These interactions promote DNA repair by homologous recombination (HR). More recently, PALB2 has been found to bind the RAD51 paralog, RAD51C, as well as the translesion polymerase pol eta, both of which are tumor suppressors with functions in HR. Further, an interaction with MRG15, which is related to chromatin regulation, may facilitate DNA repair in damaged chromatin. Finally, PALB2 interacts with KEAP1, a regulator of the response to oxidative stress. The PALB2 network appears to mediate the maintenance of genome stability, may explain the association of many of the corresponding genes with similar spectra of tumors, and could present novel therapeutic opportunities.
Zitouni,2014 (24954208) Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M "Polo-like kinases: structural variations lead to multiple functions." Nat Rev Mol Cell Biol 2014 Jun 23
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Elserafy,2014 (24954044) Elserafy M, Saric M, Neuner A, Lin TC, Zhang W, Seybold C, Sivashanmugam L, Schiebel E "Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle." Curr Biol 2014 Jul 7
BACKGROUND: The spindle pole body (SPB) of budding yeast is the functional equivalent of the mammalian centrosome. Like the centrosome, the SPB duplicates once per cell cycle. The new SPB assembles adjacent to the mother SPB at a substructure called the bridge. The half-bridge, the bridge precursor, is a one-sided extension of the SPB central plaque layered on both sides of the nuclear envelope. Parallel Sfi1 molecules longitudinally span the half-bridge with their N termini embedded in the SPB central plaque, whereas their C termini mark the half-bridge distal end. In early G1, half-bridge elongation by antiparallel C-to-C dimerization of Sfi1 exposes free N-Sfi1 where the new SPB assembles. After SPB duplication, the dimerized Sfi1 is severed to allow spindle formation and SPB reduplication. RESULTS: We show that Sfi1 C-terminal domain harbors phosphorylation sites for Cdk1 and the polo-like kinase Cdc5. Cdk1 and, to a lesser extent, Cdc5 inhibit SPB duplication as phosphomimetic sfi1 mutations lead to metaphase cells with a single SPB. In contrast, phosphoinhibitory sfi1 mutations in Cdk1 sites are lethal because cells fail to sever the bridge after SPB duplication. Moreover, Cdc14 dephosphorylates C-Sfi1 to prepare it for a new round of duplication, and the kinase Mps1 promotes Sfi1 extension in G1. CONCLUSIONS: Positive (Cdc14) and negative (Cdk1 and Cdc5) SPB duplication signals are integrated at the level of the half-bridge component Sfi1. In addition, Mps1 activates Sfi1 duplication. Fluctuating activities of these regulators ensure one SPB duplication event per cell cycle.
Van Roey,2014 (24926813) Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE "Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation." Chem Rev 2014 Jul 09
None
Xie,2014 (24910198) Xie S, Lu Y, Jakoncic J, Sun H, Xia J, Qian C "Structure of RPA32 bound to the N-terminus of SMARCAL1 redefines the binding interface between RPA32 and its interacting proteins." FEBS J 2014 Jul 29
Replication protein A subunit RPA32 contains a C-terminal domain that interacts with a variety of DNA damage response proteins including SMARCAL1, Tipin, UNG2 and XPA. We have solved the high-resolution crystal structure of RPA32 C-terminal domain (RPA32C) in complex with a 26-amino-acid peptide derived from the N-terminus of SMARCAL1 (SMARCAL1N). The RPA32C-SMARCAL1N structure reveals a 1 : 1 binding stoichiometry and displays a well-ordered binding interface. SMARCAL1N adopts a long alpha-helical conformation with the highly conserved 11 residues aligned on one face of the alpha-helix showing extensive interactions with the RPA32C domain. Extensive mutagenesis experiments were performed to corroborate the interactions observed in crystal structure. Moreover, the alpha1/alpha2 loop of the RPA32C domain undergoes a conformational rearrangement upon SMARCAL1N binding. NMR study has further confirmed that the RPA32C-SMARCAL1N interaction induces conformational changes in RPA32C. Isothermal titration calorimetry studies have also demonstrated that the conserved alpha-helical motif defined in the current study is required for sufficient binding of RPA32C. Taken together, our study has provided convincing structural information that redefines the common recognition pattern shared by RPA32C interacting proteins. DATABASE: The atomic coordinates of RPA32C in complex with 26-aa SMARCAL1 (SMARCAL1N) peptide have been deposited at the Protein Data Bank with accession code 4MQV. STRUCTURED DIGITAL ABSTRACT: RPA32 and SMARCAL1 bind by isothermal titration calorimetry(1, 2, 3, 4, 5, 6, 7, 8, 9) RPA32 and SMARCAL1 bind by molecular sieving (View interaction) RPA32 and SMARCAL1 bind by x-ray crystallography (View interaction) Tipin and RPA32 bind by isothermal titration calorimetry (1, 2) RPA32 and UNG2 bind by isothermal titration calorimetry (1, 2, 3) SMARCAL1 and RPA32 bind by nuclear magnetic resonance (View interaction) UNG2 and RPA32 bind by nuclear magnetic resonance (View interaction) Tipin and RPA32 bind by nuclear magnetic resonance (View interaction).
Dodd,2014 (24902122) Dodd DA, Worth RG, Rosen MK, Grinstein S, van Oers NS, Hansen EJ "The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase." MBio 2014 Jun 06
Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcgamma receptor (FcgammaR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. IMPORTANCE: Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for phagocytic activity. Haemophilus ducreyi, a sexually transmitted pathogen, secretes a 4,153-amino-acid (aa) protein (LspA1) that effectively inhibits FcgammaR-mediated phagocytic activity. In this study, we show that a 294-aa domain within this bacterial protein binds to C-terminal Src kinase (Csk) and stimulates its catalytic activity, resulting in a significant attenuation of Src kinase activity and consequent inhibition of phagocytosis. The ability to inhibit phagocytosis via Csk is not unique to H. ducreyi, because we found that the Helicobacter pylori CagA protein also inhibits phagocytosis in a Csk-dependent manner. Harnessing Csk to subvert the FcgammaR-mediated phagocytic pathway represents a new bacterial effector mechanism for circumventing the innate immune response.
Baron,2014 (24885147) Baron Y, Pedrioli PG, Tyagi K, Johnson C, Wood NT, Fountaine D, Wightman M, Alexandru G "VAPB/ALS8 interacts with FFAT-like proteins including the p97 cofactor FAF1 and the ASNA1 ATPase." BMC Biol 2014 May 29
BACKGROUND: FAF1 is a ubiquitin-binding adaptor for the p97 ATPase and belongs to the UBA-UBX family of p97 cofactors. p97 converts the energy derived from ATP hydrolysis into conformational changes of the p97 hexamer, which allows the dissociation of its targets from cellular structures or from larger protein complexes to facilitate their ubiquitin-dependent degradation. VAPB and the related protein VAPA form homo- and heterodimers that are anchored in the endoplasmic reticulum membrane and can interact with protein partners carrying a FFAT motif. Mutations in either VAPB or p97 can cause amyotrophic lateral sclerosis, a neurodegenerative disorder that affects upper and lower motor neurons. RESULTS: We show that FAF1 contains a non-canonical FFAT motif that allows it to interact directly with the MSP domain of VAPB and, thereby, to mediate VAPB interaction with p97. This finding establishes a link between two proteins that can cause amyotrophic lateral sclerosis when mutated, VAPB/ALS8 and p97/ALS14. Subsequently, we identified a similar FFAT-like motif in the ASNA1 subunit of the transmembrane-domain recognition complex (TRC), which in turn mediates ASNA1 interaction with the MSP domain of VAPB. Proteasome inhibition leads to the accumulation of ubiquitinated species in VAPB immunoprecipitates and this correlates with an increase in FAF1 and p97 binding. We found that VAPB interaction with ubiquitinated proteins is strongly reduced in cells treated with FAF1 siRNA. Our efforts to determine the identity of the ubiquitinated targets common to VAPB and FAF1 led to the identification of RPN2, a subunit of an oligosaccharyl-transferase located at the endoplasmic reticulum, which may be regulated by ubiquitin-mediated degradation. CONCLUSIONS: The FFAT-like motifs we identified in FAF1 and ASNA1 demonstrate that sequences containing a single phenylalanine residue with the consensus (D/E)(D/E)FEDAx(D/E) are also proficient to mediate interaction with VAPB. Our findings indicate that the repertoire of VAPB interactors is more diverse than previously anticipated and link VAPB to the function of ATPase complexes such as p97/FAF1 and ASNA1/TRC.
Zhao,2014 (24880689) Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, Liu Z, Zhao Y, Xue Y, Ren J "GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs." Nucleic Acids Res 2014 Jul 03
Small ubiquitin-like modifiers (SUMOs) regulate a variety of cellular processes through two distinct mechanisms, including covalent sumoylation and non-covalent SUMO interaction. The complexity of SUMO regulations has greatly hampered the large-scale identification of SUMO substrates or interaction partners on a proteome-wide level. In this work, we developed a new tool called GPS-SUMO for the prediction of both sumoylation sites and SUMO-interaction motifs (SIMs) in proteins. To obtain an accurate performance, a new generation group-based prediction system (GPS) algorithm integrated with Particle Swarm Optimization approach was applied. By critical evaluation and comparison, GPS-SUMO was demonstrated to be substantially superior against other existing tools and methods. With the help of GPS-SUMO, it is now possible to further investigate the relationship between sumoylation and SUMO interaction processes. A web service of GPS-SUMO was implemented in PHP+JavaScript and freely available at http://sumosp.biocuckoo.org.
Ben-Johny,2014 (24863929) Ben-Johny M, Yue DT "Calmodulin regulation (calmodulation) of voltage-gated calcium channels." J Gen Physiol 2014 May 27
Calmodulin regulation (calmodulation) of the family of voltage-gated CaV1-2 channels comprises a prominent prototype for ion channel regulation, remarkable for its powerful Ca(2+) sensing capabilities, deep in elegant mechanistic lessons, and rich in biological and therapeutic implications. This field thereby resides squarely at the epicenter of Ca(2+) signaling biology, ion channel biophysics, and therapeutic advance. This review summarizes the historical development of ideas in this field, the scope and richly patterned organization of Ca(2+) feedback behaviors encompassed by this system, and the long-standing challenges and recent developments in discerning a molecular basis for calmodulation. We conclude by highlighting the considerable synergy between mechanism, biological insight, and promising therapeutics.
Dias,2014 (24788516) Dias J, Van Nguyen N, Georgiev P, Gaub A, Brettschneider J, Cusack S, Kadlec J, Akhtar A "Structural analysis of the KANSL1/WDR5/KANSL2 complex reveals that WDR5 is required for efficient assembly and chromatin targeting of the NSL complex." Genes Dev 2014 May 05
The subunits of the nonspecific lethal (NSL) complex, which include the histone acetyltransferase MOF (males absent on the first), play important roles in various cellular functions, including transcription regulation and stem cell identity maintenance and reprogramming, and are frequently misregulated in disease. Here, we provide the first biochemical and structural insights into the molecular architecture of this large multiprotein assembly. We identified several direct interactions within the complex and show that KANSL1 acts as a scaffold protein interacting with four other subunits, including WDR5, which in turn binds KANSL2. Structural analysis of the KANSL1/WDR5/KANSL2 subcomplex reveals how WDR5 is recruited into the NSL complex via conserved linear motifs of KANSL1 and KANSL2. Using structure-based KANSL1 mutants in transgenic flies, we show that the KANSL1-WDR5 interaction is required for proper assembly, efficient recruitment of the NSL complex to target promoters, and fly viability. Our data clearly show that the interactions of WDR5 with the MOF-containing NSL complex and MLL/COMPASS histone methyltransferase complexes are mutually exclusive. We propose that rather than being a shared subunit, WDR5 plays an important role in assembling distinct histone-modifying complexes with different epigenetic regulatory roles.
Chen,2014 (24787902) Chen LT, Liang WX, Chen S, Li RK, Tan JL, Xu PF, Luo LF, Wang L, Yu SH, Meng G, Li KK, Liu TX, Chen Z, Chen SJ "Functional and molecular features of the calmodulin-interacting protein IQCG required for haematopoiesis in zebrafish." Nat Commun 2014 May 02
We previously reported a fusion protein NUP98-IQCG in an acute leukaemia, which functions as an aberrant regulator of transcriptional expression, yet the structure and function of IQCG have not been characterized. Here we use zebrafish to investigate the role of iqcg in haematopoietic development, and find that the numbers of haematopoietic stem cells and multilineage-differentiated cells are reduced in iqcg-deficient embryos. Mechanistically, IQCG binds to calmodulin (CaM) and acts as a molecule upstream of CaM-dependent kinase IV (CaMKIV). Crystal structures of complexes between CaM and IQ domain of IQCG reveal dual CaM-binding footprints in this motif, and provide a structural basis for a higher CaM-IQCG affinity when deprived of calcium. The results collectively allow us to understand IQCG-mediated calcium signalling in haematopoiesis, and propose a model in which IQCG stores CaM at low cytoplasmic calcium concentrations, and releases CaM to activate CaMKIV when calcium level rises.
Tammsalu,2014 (24782567) Tammsalu T, Matic I, Jaffray EG, Ibrahim AF, Tatham MH, Hay RT "Proteome-wide identification of SUMO2 modification sites." Sci Signal 2014 Apr 30
Posttranslational modification with small ubiquitin-like modifiers (SUMOs) alters the function of proteins involved in diverse cellular processes. SUMO-specific enzymes conjugate SUMOs to lysine residues in target proteins. Although proteomic studies have identified hundreds of sumoylated substrates, methods to identify the modified lysines on a proteomic scale are lacking. We developed a method that enabled proteome-wide identification of sumoylated lysines that involves the expression of polyhistidine (6His)-tagged SUMO2 with Thr(90) mutated to Lys. Endoproteinase cleavage with Lys-C of 6His-SUMO2(T90K)-modified proteins from human cell lysates produced a diGly remnant on SUMO2(T90K)-conjugated lysines, enabling immunoprecipitation of SUMO2(T90K)-modified peptides and producing a unique mass-to-charge signature. Mass spectrometry analysis of SUMO-enriched peptides revealed more than 1000 sumoylated lysines in 539 proteins, including many functionally related proteins involved in cell cycle, transcription, and DNA repair. Not only can this strategy be used to study the dynamics of sumoylation and other potentially similar posttranslational modifications, but also, these data provide an unprecedented resource for future research on the role of sumoylation in cellular physiology and disease.
Bieging,2014 (24739573) Bieging KT, Mello SS, Attardi LD "Unravelling mechanisms of p53-mediated tumour suppression." Nat Rev Cancer 2014 Apr 24
p53 is a crucial tumour suppressor that responds to diverse stress signals by orchestrating specific cellular responses, including transient cell cycle arrest, cellular senescence and apoptosis, which are all processes associated with tumour suppression. However, recent studies have challenged the relative importance of these canonical cellular responses for p53-mediated tumour suppression and have highlighted roles for p53 in modulating other cellular processes, including metabolism, stem cell maintenance, invasion and metastasis, as well as communication within the tumour microenvironment. In this Opinion article, we discuss the roles of classical p53 functions, as well as emerging p53-regulated processes, in tumour suppression.
Bhandari,2014 (24736845) Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E "Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression." Genes Dev 2014 Apr 16
The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4-NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1-3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1-3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1-3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4-NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4-NOT complex as the main effector complex for Nanos function.
Nieto-Pelegrin,2014 (24675776) Nieto-Pelegrin E, Meiler E, Martin-Villa JM, Benito-Leon M, Martinez-Quiles N "Crk adaptors negatively regulate actin polymerization in pedestals formed by enteropathogenic Escherichia coli (EPEC) by binding to Tir effector." PLoS Pathog 2014 Mar
Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization.
Stamos,2014 (24642411) Stamos JL, Chu ML, Enos MD, Shah N, Weis WI "Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6." Elife 2014 Mar 19
Glycogen synthase kinase-3 (GSK-3) is a key regulator of many cellular signaling pathways. Unlike most kinases, GSK-3 is controlled by inhibition rather than by specific activation. In the insulin and several other signaling pathways, phosphorylation of a serine present in a conserved sequence near the amino terminus of GSK-3 generates an auto-inhibitory peptide. In contrast, Wnt/beta-catenin signal transduction requires phosphorylation of Ser/Pro rich sequences present in the Wnt co-receptors LRP5/6, and these motifs inhibit GSK-3 activity. We present crystal structures of GSK-3 bound to its phosphorylated N-terminus and to two of the phosphorylated LRP6 motifs. A conserved loop unique to GSK-3 undergoes a dramatic conformational change that clamps the bound pseudo-substrate peptides, and reveals the mechanism of primed substrate recognition. The structures rationalize target sequence preferences and suggest avenues for the design of inhibitors selective for a subset of pathways regulated by GSK-3. DOI: http://dx.doi.org/10.7554/eLife.01998.001.
Schumacher,2014 (24641320) Schumacher FR, Sorrell FJ, Alessi DR, Bullock AN, Kurz T "Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation." Biochem J 2014 May 14
WNK1 [with no lysine (K)] and WNK4 regulate blood pressure by controlling the activity of ion co-transporters in the kidney. Groundbreaking work has revealed that the ubiquitylation and hence levels of WNK isoforms are controlled by a Cullin-RING E3 ubiquitin ligase complex (CRL3KLHL3) that utilizes CUL3 (Cullin3) and its substrate adaptor, KLHL3 (Kelch-like protein 3). Loss-of-function mutations in either CUL3 or KLHL3 cause the hereditary high blood pressure disease Gordon's syndrome by stabilizing WNK isoforms. KLHL3 binds to a highly conserved degron motif located within the C-terminal non-catalytic domain of WNK isoforms. This interaction is essential for ubiquitylation by CRL3KLHL3 and disease-causing mutations in WNK4 and KLHL3 exert their effects on blood pressure by disrupting this interaction. In the present study, we report on the crystal structure of the KLHL3 Kelch domain in complex with the WNK4 degron motif. This reveals an intricate web of interactions between conserved residues on the surface of the Kelch domain beta-propeller and the WNK4 degron motif. Importantly, many of the disease-causing mutations inhibit binding by disrupting critical interface contacts. We also present the structure of the WNK4 degron motif in complex with KLHL2 that has also been reported to bind WNK4. This confirms that KLHL2 interacts with WNK kinases in a similar manner to KLHL3, but strikingly different to how another KLHL protein, KEAP1 (Kelch-like enoyl-CoA hydratase-associated protein 1), binds to its substrate NRF2 (nuclear factor-erythroid 2-related factor 2). The present study provides further insights into how Kelch-like adaptor proteins recognize their substrates and provides a structural basis for how mutations in WNK4 and KLHL3 lead to hypertension.
Panas,2014 (24623412) Panas MD, Ahola T, McInerney GM "The C-terminal repeat domains of nsP3 from the Old World alphaviruses bind directly to G3BP." J Virol 2014 Apr 23
The Old World alphaviruses block stress granule assembly by sequestration of RasGAP SH3-domain binding protein (G3BP). Here, we show that the proline-rich sequences in the hypervariable domain of nonstructural protein 3 (nsP3) of both Semliki Forest virus and Chikungunya virus were dispensable for binding to G3BP. nsP3 variants with or without this domain colocalized with G3BP. Furthermore, we show that the C-terminal repeat motifs of nsP3 were sufficient for G3BP binding.
Ivarsson,2014 (24550280) Ivarsson Y, Arnold R, McLaughlin M, Nim S, Joshi R, Ray D, Liu B, Teyra J, Pawson T, Moffat J, Li SS, Sidhu SS, Kim PM "Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes." Proc Natl Acad Sci U S A 2014 Feb 18
The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins beta-PIX, plakophilin-4, and guanylate cyclase soluble subunit alpha-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-muM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.
Beale,2014 (24528869) Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F "A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability." Cell Host Microbe 2014 Feb 17
Autophagy recycles cellular components and defends cells against intracellular pathogens. While viruses must evade autophagocytic destruction, some viruses can also subvert autophagy for their own benefit. The ability of influenza A virus (IAV) to evade autophagy depends on the Matrix 2 (M2) ion-channel protein. We show that the cytoplasmic tail of IAV M2 interacts directly with the essential autophagy protein LC3 and promotes LC3 relocalization to the unexpected destination of the plasma membrane. LC3 binding is mediated by a highly conserved LC3-interacting region (LIR) in M2. The M2 LIR is required for LC3 redistribution to the plasma membrane in virus-infected cells. Mutations in M2 that abolish LC3 binding interfere with filamentous budding and reduce virion stability. IAV therefore subverts autophagy by mimicking a host short linear protein-protein interaction motif. This strategy may facilitate transmission of infection between organisms by enhancing the stability of viral progeny.
Rogov,2014 (24462201) Rogov V, Dotsch V, Johansen T, Kirkin V "Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy." Mol Cell 2014 Jan 27
Selective autophagy ensures recognition and removal of various cytosolic cargoes. Hence, aggregated proteins, damaged organelles, or pathogens are enclosed into the double-membrane vesicle, the autophagosome, and delivered to the lysosome for degradation. This process is mediated by selective autophagy receptors, such as p62/SQSTM1. These proteins recognize autophagic cargo and, via binding to small ubiquitin-like modifiers (UBLs)--Atg8/LC3/GABARAPs and ATG5--mediate formation of selective autophagosomes. Recently, it was found that UBLs can directly engage the autophagosome nucleation machinery. Here, we review recent findings on selective autophagy and propose a model for selective autophagosome formation in close proximity to cargo.
Gabel,2013 (24409475) Gabel SA, DeRose EF, London RE "XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair." DNA Repair (Amst) 2013 Dec
The function of X-ray cross complementing group 1 protein (XRCC1), a scaffold that binds to DNA repair enzymes involved in single-strand break and base excision repair, requires that it be recruited to sites of damaged DNA. However, structural insights into this recruitment are currently limited. Sequence analysis of the first unstructured linker domain of XRCC1 identifies a segment consistent with a possible REV1 interacting region (X1RIR) motif. The X1RIR motif is present in translesion polymerases that can be recruited to the pol /REV1 DNA repair complex via a specific interaction with the REV1 C-terminal domain. NMR and fluorescence titration studies were performed on XRCC1-derived peptides containing this putative RIR motif in order to evaluate the binding affinity for the REV1 C-terminal domain. These studies demonstrate an interaction of the XRCC1-derived peptide with the human REV1 C-terminal domain characterized by dissociation constants in the low micromolar range. Ligand competition studies comparing the XRCC1 RIR peptide with previously studied RIR peptides were found to be inconsistent with the NMR based Kd values. These discrepancies were resolved using a fluorescence assay for which the RIR-REV1 system is particularly well suited. The structure of a REV1-XRCC1 peptide complex was determined by using NOE restraints to dock the unlabeled XRCC1 peptide with a labeled REV1 C-terminal domain. The structure is generally homologous with previously determined complexes with the pol kappa and pol eta RIR peptides, although the helical segment in XRCC1 is shorter than was observed in these cases. These studies suggest the possible involvement of XRCC1 and its associated repair factors in post replication repair.
Paiardini,2014 (24408864) Paiardini A, Aducci P, Cervoni L, Cutruzzola F, Di Lucente C, Janson G, Pascarella S, Rinaldo S, Visconti S, Camoni L "The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets." IUBMB Life 2014 Feb 06
Modulation of the interaction of regulatory 14-3-3 proteins to their physiological partners through small cell-permeant molecules is a promising strategy to control cellular processes where 14-3-3s are engaged. Here, we show that the fungal phytotoxin fusicoccin (FC), known to stabilize 14-3-3 association to the plant plasma membrane H(+) -ATPase, is able to stabilize 14-3-3 interaction to several client proteins with a mode III binding motif. Isothermal titration calorimetry analysis of the interaction between 14-3-3s and different peptides reproducing a mode III binding site demonstrated the FC ability to stimulate 14-3-3 the association. Moreover, molecular docking studies provided the structural rationale for the differential FC effect, which exclusively depends on the biochemical properties of the residue in peptide C-terminal position. Our study proposes FC as a promising tool to control cellular processes regulated by 14-3-3 proteins, opening new perspectives on its potential pharmacological applications.
Borchert,2014 (24371076) Borchert S, Czech-Sioli M, Neumann F, Schmidt C, Wimmer P, Dobner T, Grundhoff A, Fischer N "High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened Merkel cell polyomavirus large T antigens." J Virol 2014 Feb 25
Interference with tumor suppressor pathways by polyomavirus-encoded tumor antigens (T-Ags) can result in transformation. Consequently, it is thought that T-Ags encoded by Merkel cell polyomavirus (MCPyV), a virus integrated in approximately 90% of all Merkel cell carcinoma (MCC) cases, are major contributors to tumorigenesis. The MCPyV large T-Ag (LT-Ag) has preserved the key functional domains present in all family members but has also acquired unique regions that flank the LxCxE motif. As these regions may mediate unique functions, or may modulate those shared with T-Ags of other polyomaviruses, functional studies of MCPyV T-Ags are required. Here, we have performed a comparative study of full-length or MCC-derived truncated LT-Ags with regard to their biochemical characteristics, their ability to bind to retinoblastoma (Rb) and p53 proteins, and their transforming potential. We provide evidence that full-length MCPyV LT-Ag may not directly bind to p53 but nevertheless can significantly reduce p53-dependent transcription in reporter assays. Although early region expression constructs harboring either full-length or MCC-derived truncated LT-Ag genes can transform primary baby rat kidney cells, truncated LT-Ags do not bind to p53 or reduce p53-dependent transcription. Interestingly, shortened LT-Ags exhibit a very high binding affinity for Rb, as shown by coimmunoprecipitation and in vitro binding studies. Additionally, we show that truncated MCPyV LT-Ag proteins are expressed at higher levels than those for the wild-type protein and are able to partially relocalize Rb to the cytoplasm, indicating that truncated LT proteins may have gained additional features that distinguish them from the full-length protein. IMPORTANCE: MCPyV is one of the 12 known polyomaviruses that naturally infect humans. Among these, it is of particular interest since it is the only human polyomavirus known to be involved in tumorigenesis. MCPyV is thought to be causally linked to MCC, a rare skin tumor. In these tumors, viral DNA is monoclonally integrated into the genome of the tumor cells in up to 90% of all MCC cases, and the integrated MCV genomes, furthermore, harbor signature mutations in the so-called early region that selectively abrogate viral replication while preserving cell cycle deregulating functions of the virus. This study describes comparative studies of early region T-Ag protein characteristics, their ability to bind to Rb and p53, and their transforming potential.
Fukutomi,2014 (24366543) Fukutomi T, Takagi K, Mizushima T, Ohuchi N, Yamamoto M "Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1." Mol Cell Biol 2014 Feb 10
Transcription factor Nrf2 (NF-E2-related factor 2) coordinately regulates cytoprotective gene expression, but under unstressed conditions, Nrf2 is degraded rapidly through Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination. Nrf2 harbors two Keap1-binding motifs, DLG and ETGE. Interactions between these two motifs and Keap1 constitute a key regulatory nexus for cellular Nrf2 activity through the formation of a two-site binding hinge-and-latch mechanism. In this study, we determined the minimum Keap1-binding sequence of the DLG motif, the low-affinity latch site, and defined a new DLGex motif that covers a sequence much longer than that previously defined. We have successfully clarified the crystal structure of the Keap1-DC-DLGex complex at 1.6 A. DLGex possesses a complicated helix structure, which interprets well the human-cancer-derived loss-of-function mutations in DLGex. In thermodynamic analyses, Keap1-DLGex binding is characterized as enthalpy and entropy driven, while Keap1-ETGE binding is characterized as purely enthalpy driven. In kinetic analyses, Keap1-DLGex binding follows a fast-association and fast-dissociation model, while Keap1-ETGE binding contains a slow-reaction step that leads to a stable conformation. These results demonstrate that the mode of DLGex binding to Keap1 is distinct from that of ETGE structurally, thermodynamically, and kinetically and support our contention that the DLGex motif serves as a converter transmitting environmental stress to Nrf2 induction as the latch site.
Wild,2013 (24345374) Wild P, McEwan DG, Dikic I "The LC3 interactome at a glance." J Cell Sci 2013 Dec 31
Continuous synthesis of all cellular components requires their constant turnover in order for a cell to achieve homeostasis. To this end, eukaryotic cells are endowed with two degradation pathways - the ubiquitin-proteasome system and the lysosomal pathway. The latter pathway is partly fed by autophagy, which targets intracellular material in distinct vesicles, termed autophagosomes, to the lysosome. Central to this pathway is a set of key autophagy proteins, including the ubiquitin-like modifier Atg8, that orchestrate autophagosome initiation and biogenesis. In higher eukaryotes, the Atg8 family comprises six members known as the light chain 3 (LC3) or gamma-aminobutyric acid (GABA)-receptor-associated protein (GABARAP) proteins. Considerable effort during the last 15 years to decipher the molecular mechanisms that govern autophagy has significantly advanced our understanding of the functioning of this protein family. In this Cell Science at a Glance article and the accompanying poster, we present the current LC3 protein interaction network, which has been and continues to be vital for gaining insight into the regulation of autophagy.
Boschert,2013 (24312339) Boschert V, van Dinther M, Weidauer S, van Pee K, Muth EM, Ten Dijke P, Mueller TD "Mutational analysis of sclerostin shows importance of the flexible loop and the cystine-knot for Wnt-signaling inhibition." PLoS One 2013 Dec 06
The cystine-knot containing protein Sclerostin is an important negative regulator of bone growth and therefore represents a promising therapeutic target. It exerts its biological task by inhibiting the Wnt (wingless and int1) signaling pathway, which participates in bone formation by promoting the differentiation of mesenchymal stem cells to osteoblasts. The core structure of Sclerostin consists of three loops with the first and third loop (Finger 1 and Finger 2) forming a structured beta-sheet and the second loop being unstructured and highly flexible. Biochemical data showed that the flexible loop is important for binding of Sclerostin to Wnt co-receptors of the low-density lipoprotein related-protein family (LRP), by interacting with the Wnt co-receptors LRP5 or -6 it inhibits Wnt signaling. To further examine the structural requirements for Wnt inhibition, we performed an extensive mutational study within all three loops of the Sclerostin core domain involving single and multiple mutations as well as truncation of important regions. By this approach we could confirm the importance of the second loop and especially of amino acids Asn92 and Ile94 for binding to LRP6. Based on a Sclerostin variant found in a Turkish family suffering from Sclerosteosis we generated a Sclerostin mutant with cysteines 84 and 142 exchanged thereby removing the third disulfide bond of the cystine-knot. This mutant binds to LRP6 with reduced binding affinity and also exhibits a strongly reduced inhibitory activity against Wnt1 thereby showing that also elements outside the flexible loop are important for inhibition of Wnt by Sclerostin. Additionally, we examined the effect of the mutations on the inhibition of two different Wnt proteins, Wnt3a and Wnt1. We could detect clear differences in the inhibition of these proteins, suggesting that the mechanism by which Sclerostin antagonizes Wnt1 and Wnt3a is fundamentally different.
Cherry,2013 (24311597) Cherry AL, Finta C, Karlstrom M, Jin Q, Schwend T, Astorga-Wells J, Zubarev RA, Del Campo M, Criswell AR, de Sanctis D, Jovine L, Toftgard R "Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation." Acta Crystallogr D Biol Crystallogr 2013 Dec 06
Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU-GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU-GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.
Collins,2014 (24290140) Collins KJ, Yuan Z, Kovall RA "Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of Notch signaling." Structure 2014 Jan 13
Notch refers to a highly conserved cell-to-cell signaling pathway with essential roles in embryonic development and tissue maintenance. Dysfunctional signaling causes human disease, highlighting the importance of pathway regulation. Notch signaling ultimately results in the activation of target genes, which is regulated by the nuclear effector CSL (CBF-1/RBP-J, Su(H), Lag-1). CSL dually functions as an activator and a repressor of transcription through differential interactions with coactivator or corepressor proteins, respectively. Although the structures of CSL-coactivator complexes have been determined, the structures of CSL-corepressor complexes are unknown. Here, using a combination of structural, biophysical, and cellular approaches, we characterize the structure and function of CSL in complex with the corepressor KyoT2. Collectively, our studies provide molecular insights into how KyoT2 binds CSL with high affinity and competes with coactivators, such as Notch, for binding CSL. These studies are important for understanding how CSL functions as both an activator and a repressor of transcription of Notch target genes.
Neuhaus,2014 (24235149) Neuhaus A, Kooshapur H, Wolf J, Meyer NH, Madl T, Saidowsky J, Hambruch E, Lazam A, Jung M, Sattler M, Schliebs W, Erdmann R "A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes." J Biol Chem 2014 Jan 06
Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57-71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar alpha-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.
Zhang,2013 (24217340) Zhang Y, Fu L, Qi X, Zhang Z, Xia Y, Jia J, Jiang J, Zhao Y, Wu G "Structural insight into the mutual recognition and regulation between Suppressor of Fused and Gli/Ci." Nat Commun 2013 Nov 12
Hedgehog (Hh) signalling regulates embryonic development and adult tissue homoeostasis. Mutations of its pathway components including Suppressor of Fused (Sufu) and Gli/Ci predispose to cancers and congenital anomalies. The Sufu-Gli protein complex occupies a central position in the vertebrate Hh signalling pathway, especially in mammals. Here structures of full-length human and Drosophila Sufu, the human Sufu-Gli complex, along with normal mode analysis and FRET measurement results, reveal that Sufu alternates between 'open' and 'closed' conformations. The 'closed' form of Sufu is stabilized by Gli binding and inhibited by Hh treatment, whereas the 'open' state of Sufu is promoted by Gli-dissociation and Hh signalling. Mutations of critical interface residues disrupt the Sufu-Gli complex and prevent Sufu from repressing Gli-mediated transcription, tethering Gli in the cytoplasm and protecting Gli from the 26S proteasome-mediated degradation. Our study thus provides mechanistic insight into the mutual recognition and regulation between Sufu and Gli/Ci.
Warfel,2013 (24189531) Warfel NA, Dolloff NG, Dicker DT, Malysz J, El-Deiry WS "CDK1 stabilizes HIF-1alpha via direct phosphorylation of Ser668 to promote tumor growth." Cell Cycle 2013 Dec 06
Hypoxia-inducible factor 1 (HIF-1) is a major mediator of tumor physiology, and its activation is correlated with tumor progression, metastasis, and therapeutic resistance. HIF-1 is activated in a broad range of solid tumors due to intratumoral hypoxia or genetic alterations that enhance its expression or inhibit its degradation. As a result, decreasing HIF-1alpha expression represents an attractive strategy to sensitize hypoxic tumors to anticancer therapies. Here, we show that cyclin-dependent kinase 1 (CDK1) regulates the expression of HIF-1alpha, independent of its known regulators. Overexpression of CDK1 and/or cyclin B1 is sufficient to stabilize HIF-1alpha under normoxic conditions, whereas inhibition of CDK1 enhances the proteasomal degradation of HIF-1alpha, reducing its half-life and steady-state levels. In vitro kinase assays reveal that CDK1 directly phosphorylates HIF-1alpha at a previously unidentified regulatory site, Ser668. HIF-1alpha is stabilized under normoxic conditions during G 2/M phase via CDK1-mediated phosphorylation of Ser668. A phospho-mimetic construct of HIF-1alpha at Ser668 (S668E) is significantly more stable under both normoxic and hypoxic conditions, resulting in enhanced transcription of HIF-1 target genes and increased tumor cell invasion and migration. Importantly, HIF-1alpha (S668E) displays increased tumor angiogenesis, proliferation, and tumor growth in vivo compared with wild-type HIF-1alpha. Thus, we have identified a novel link between CDK1 and HIF-1alpha that provides a potential molecular explanation for the elevated HIF-1 activity observed in primary and metastatic tumors, independent of hypoxia, and offers a molecular rationale for the clinical translation of CDK inhibitors for use in tumors with constitutively active HIF-1.
McGrath,2013 (24186063) McGrath DA, Balog ER, Koivomagi M, Lucena R, Mai MV, Hirschi A, Kellogg DR, Loog M, Rubin SM "Cks confers specificity to phosphorylation-dependent CDK signaling pathways." Nat Struct Mol Biol 2013 Dec 05
Cks is an evolutionarily conserved protein that regulates cyclin-dependent kinase (CDK) activity. Clarifying the underlying mechanisms and cellular contexts of Cks function is critical because Cks is essential for proper cell growth, and its overexpression has been linked to cancer. We observe that budding-yeast Cks associates with select phosphorylated sequences in cell cycle-regulatory proteins. We characterize the molecular interactions responsible for this specificity and demonstrate that Cks enhances CDK activity in response to specific priming phosphosites. Identification of the binding consensus sequence allows us to identify putative Cks-directed CDK substrates and binding partners. We characterize new Cks-binding sites in the mitotic regulator Wee1 and discover a new role for Cks in regulating CDK activity at mitotic entry. Together, our results portray Cks as a multifunctional phosphoadaptor that serves as a specificity factor for CDK activity.
Koivomagi,2013 (24186061) Koivomagi M, Ord M, Iofik A, Valk E, Venta R, Faustova I, Kivi R, Balog ER, Rubin SM, Loog M "Multisite phosphorylation networks as signal processors for Cdk1." Nat Struct Mol Biol 2013 Dec 05
The order and timing of cell-cycle events is controlled by changing substrate specificity and different activity thresholds of cyclin-dependent kinases (CDKs). However, it is not understood how a single protein kinase can trigger hundreds of switches in a sufficiently time-resolved fashion. We show that cyclin-Cdk1-Cks1-dependent phosphorylation of multisite targets in Saccharomyces cerevisiae is controlled by key substrate parameters including distances between phosphorylation sites, distribution of serines and threonines as phosphoacceptors and positioning of cyclin-docking motifs. The component mediating the key interactions in this process is Cks1, the phosphoadaptor subunit of the cyclin-Cdk1-Cks1 complex. We propose that variation of these parameters within networks of phosphorylation sites in different targets provides a wide range of possibilities for differential amplification of Cdk1 signals, thus providing a mechanism to generate a wide range of thresholds in the cell cycle.
Klebba,2013 (24184097) Klebba JE, Buster DW, Nguyen AL, Swatkoski S, Gucek M, Rusan NM, Rogers GC "Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron." Curr Biol 2013 Nov 22
Polo-like kinase 4 (Plk4) is a conserved master regulator of centriole assembly. Previously, we found that Drosophila Plk4 protein levels are actively suppressed during interphase. Degradation of interphase Plk4 prevents centriole overduplication and is mediated by the ubiquitin-ligase complex SCF(Slimb/betaTrCP). Since Plk4 stability depends on its activity, we studied the consequences of inactivating Plk4 or perturbing its phosphorylation state within its Slimb-recognition motif (SRM). Mass spectrometry of in-vitro-phosphorylated Plk4 and Plk4 purified from cells reveals that it is directly responsible for extensively autophosphorylating and generating its Slimb-binding phosphodegron. Phosphorylatable residues within this regulatory region were systematically mutated to determine their impact on Plk4 protein levels and centriole duplication when expressed in S2 cells. Notably, autophosphorylation of a single residue (Ser293) within the SRM is critical for Slimb binding and ubiquitination. Our data also demonstrate that autophosphorylation of numerous residues flanking S293 collectively contribute to establishing a high-affinity binding site for SCF(Slimb). Taken together, our findings suggest that Plk4 directly generates its own phosphodegron and can do so without the assistance of an additional kinase(s).
Park,2014 (24141787) Park JY, Singh TR, Nassar N, Zhang F, Freund M, Hanenberg H, Meetei AR, Andreassen PR "Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair." Oncogene 2014 Oct 02
Heterozygous carriers of germ-line mutations in the BRCA2/FANCD1, PALB2/FANCN and RAD51C/FANCO DNA repair genes have an increased lifetime risk of developing breast, ovarian and other cancers; bi-allelic mutations in these genes clinically manifest as Fanconi anemia (FA). Here, we demonstrate that RAD51C is part of a novel protein complex that contains PALB2 and BRCA2. Further, the PALB2 WD40 domain can directly and independently bind RAD51C and BRCA2. To understand the role of these homologous recombination (HR) proteins in DNA repair, we functionally characterize effects of missense mutants of the PALB2 WD40 domain that have been reported in breast cancer patients. In contrast to large truncations of PALB2, which display a complete loss of interaction, the L939W, T1030I and L1143P missense mutants/variants of the PALB2 WD40 domain are associated with altered patterns of direct binding to the RAD51C, RAD51 and BRCA2 HR proteins in biochemical assays. Further, the T1030I missense mutant is unstable, whereas the L939W and L1143P proteins are stable but partially disrupt the PALB2-RAD51C-BRCA2 complex in cells. Functionally, the L939W and L1143P mutants display a decreased capacity for DNA double-strand break-induced HR and an increased cellular sensitivity to ionizing radiation. As further evidence for the functional importance of the HR complex, RAD51C mutants that are associated with cancer susceptibility and FA also display decreased complex formation with PALB2. Together, our results suggest that three different cancer susceptibility and FA proteins function in a DNA repair pathway based upon the PALB2 WD40 domain binding to RAD51C and BRCA2.
Boland,2013 (24121232) Boland A, Chen Y, Raisch T, Jonas S, Kuzuoglu-Ozturk D, Wohlbold L, Weichenrieder O, Izaurralde E "Structure and assembly of the NOT module of the human CCR4-NOT complex." Nat Struct Mol Biol 2013 Nov 07
The CCR4-NOT deadenylase complex is a master regulator of translation and mRNA stability. Its NOT module orchestrates recruitment of the catalytic subunits to target mRNAs. We report the crystal structure of the human NOT module formed by the CNOT1, CNOT2 and CNOT3 C-terminal (-C) regions. CNOT1-C provides a rigid scaffold consisting of two perpendicular stacks of HEAT-like repeats. CNOT2-C and CNOT3-C heterodimerize through their SH3-like NOT-box domains. The heterodimer is stabilized and tightly anchored to the surface of CNOT1 through an unexpected intertwined arrangement of peptide regions lacking defined secondary structure. These assembly peptides mold onto their respective binding surfaces and form extensive interfaces. Mutagenesis of individual interfaces and perturbation of endogenous protein ratios cause defects in complex assembly and mRNA decay. Our studies provide a structural framework for understanding the recruitment of the CCR4-NOT complex to mRNA targets.
Dees,2014 (24118232) Dees C, Distler JH "Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies?" Exp Dermatol 2014 Jan 17
Canonical Wnt signalling belongs to the so-called morphogen pathways and plays essential roles in development and tissue homeostasis. Being such a crucial regulatory pathway, Wnt signalling is tightly controlled at different levels. However, uncontrolled activation of canonical Wnt signalling has been implicated into the pathogenesis of various human disorders. In the last years, aberrant Wnt signalling has been demonstrated in fibrotic diseases including systemic sclerosis (SSc). In this review, we will discuss the current state of research on canonical Wnt signalling in SSc. Activation of canonical Wnt signalling induces fibroblast activation with subsequent myofibroblast differentiation and excessive collagen release resulting in tissue fibrosis. Genetic or pharmacological blockade of Wnt activation ameliorates experimental fibrosis in different preclinical models. These findings have direct translational implications because several small molecule inhibitors of Wnt signalling are currently evaluated in clinical trials and some already showed first promising results.
Alpy,2013 (24105263) Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, Levine TP, Tomasetto C "STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER." J Cell Sci 2013 Dec 1
Inter-organelle membrane contacts sites (MCSs) are specific subcellular regions favoring the exchange of metabolites and information. We investigated the potential role of the late-endosomal membrane-anchored proteins StAR related lipid transfer domain-3 (STARD3) and STARD3 N-terminal like (STARD3NL) in the formation of MCSs involving late-endosomes (LEs). We demonstrate that both STARD3 and STARD3NL create MCSs between LEs and the endoplasmic reticulum (ER). STARD3 and STARD3NL use a conserved two phenylalanines in an acidic tract (FFAT)-motif to interact with ER-anchored VAP proteins. Together, they form an LE-ER tethering complex allowing heterologous membrane apposition. This LE-ER tethering complex affects organelle dynamics by altering the formation of endosomal tubules. An in situ proximity ligation assay between STARD3, STARD3NL and VAP proteins identified endogenous LE-ER MCS. Thus, we report here the identification of proteins involved in inter-organellar interaction.
Bogdanow,2013 (24101496) Bogdanow B, Weisbach H, von Einem J, Straschewski S, Voigt S, Winkler M, Hagemeier C, Wiebusch L "Human cytomegalovirus tegument protein pp150 acts as a cyclin A2-CDK-dependent sensor of the host cell cycle and differentiation state." Proc Natl Acad Sci U S A 2013 Oct 22
Upon cell entry, herpesviruses deliver a multitude of premade virion proteins to their hosts. The interplay between these incoming proteins and cell-specific regulatory factors dictates the outcome of infections at the cellular level. Here, we report a unique type of virion-host cell interaction that is essential for the cell cycle and differentiation state-dependent onset of human cytomegalovirus (HCMV) lytic gene expression. The major tegument 150-kDa phosphoprotein (pp150) of HCMV binds to cyclin A2 via a functional RXL/Cy motif resulting in its cyclin A2-dependent phosphorylation. Alanine substitution of the RXL/Cy motif prevents this interaction and allows the virus to fully escape the cyclin-dependent kinase (CDK)-mediated block of immediate early (IE) gene expression in S/G2 phase that normally restricts the onset of the HCMV replication cycle to G0/G1. Furthermore, the cyclin A2-CDK-pp150 axis is also involved in the establishment of HCMV quiescence in NTera2 cells, showing the importance of this molecular switch for differentiation state-dependent regulation of IE gene expression. Consistent with the known nucleocapsid-binding function of pp150, its RXL/Cy-dependent phosphorylation affects gene expression of the parental virion only, suggesting a cis-acting, virus particle-associated mechanism of control. The pp150 homologs of other primate and mammalian CMVs lack an RXL/Cy motif and accordingly even the nearest relative of HCMV, chimpanzee CMV, starts its lytic cycle in a cell cycle-independent manner. Thus, HCMV has evolved a molecular sensor for cyclin A2-CDK activity to restrict its IE gene expression program as a unique level of self-limitation and adaptation to its human host.
Friend,2013 (24098712) Friend LR, Landsberg MJ, Nouwens AS, Wei Y, Rothnagel JA, Smith R "Arginine methylation of hnRNP A2 does not directly govern its subcellular localization." PLoS One 2013
The hnRNP A/B paralogs A1, A2/B1 and A3 are key components of the nuclear 40S hnRNP core particles. Despite a high degree of sequence similarity, increasing evidence suggests they perform additional, functionally distinct roles in RNA metabolism. Here we identify and study the functional consequences of differential post-translational modification of hnRNPs A1, A2 and A3. We show that while arginine residues in the RGG box domain of hnRNP A1 and A3 are almost exhaustively, asymmetrically dimethylated, hnRNP A2 is dimethylated at only a single residue (Arg-254) and this modification is conserved across cell types. It has been suggested that arginine methylation regulates the nucleocytoplasmic distribution of hnRNP A/B proteins. However, we show that transfected cells expressing an A2(R254A) point mutant exhibit no difference in subcellular localization. Similarly, immunostaining and mass spectrometry of endogenous hnRNP A2 in transformed cells reveals a naturally-occurring pool of unmethylated protein but an exclusively nuclear pattern of localization. Our results suggest an alternative role for post-translational arginine methylation of hnRNPs and offer further evidence that the hnRNP A/B paralogs are not functionally redundant.
Fahraeus,2014 (24096477) Fahraeus R, Olivares-Illana V "MDM2's social network." Oncogene 2014 Aug 28
MDM2 is considered a hub protein due to its capacity to interact with a large number of different partners of which p53 is most well described. MDM2 is an E3 ubiquitin ligase, and many, but not all, of its interactions relate directly to this activity, such as substrates, adaptors or bridges, promoters, inhibitors or complementary factors. Some interactions serve regulatory functions that in response to cellular stresses control the localisation and functions of MDM2 including protein kinases, ribosomal proteins and proteases. Moreover, interactions with nucleotides serve other functions such as mRNA to regulate protein synthesis and DNA to control transcription. To perform such a pleiotropic panorama of different functions, MDM2 is subjected to a multitude of post-translational modifications and is expressed in different isoforms. The large and diverse interactome is made possible due to the plasticity of MDM2 and in this review we have listed the MDM2 interactions until now and we will discuss how this multifaceted protein can interact with such a variety of substrates to provide a key intermediary role in different signalling pathways.
Sasaki-Osugi,2013 (24078636) Sasaki-Osugi K, Imoto C, Takahara T, Shibata H, Maki M "Nuclear ALG-2 protein interacts with Ca2+ homeostasis endoplasmic reticulum protein (CHERP) Ca2+-dependently and participates in regulation of alternative splicing of inositol trisphosphate receptor type 1 (IP3R1) pre-mRNA." J Biol Chem 2013 Nov 18
The intracellular Ca(2+) signaling pathway is important for the control of broad cellular processes from fertilization to cell death. ALG-2 is a Ca(2+)-binding protein that contains five serially repeated EF-hand motifs and interacts with various proteins in a Ca(2+)-dependent manner. Although ALG-2 is present both in the cytoplasm and in the nucleus, little is known about its nuclear function. Ca(2+) homeostasis endoplasmic reticulum protein (CHERP) was first identified as an endoplasmic reticulum protein that regulates intracellular Ca(2+) mobilization in human cells, but recent proteomics data suggest an association between CHERP and spliceosomes. Here, we report that CHERP, containing a Pro-rich region and a phosphorylated Ser/Arg-rich RS-like domain, is a novel Ca(2+)-dependent ALG-2-interactive target in the nucleus. Immunofluorescence microscopic analysis revealed localization of CHERP to the nucleoplasm with prominent accumulation at nuclear speckles, which are the sites of storage and modification for pre-mRNA splicing factors. Live cell time-lapse imaging showed that nuclear ALG-2 was recruited to the CHERP-localizing speckles upon Ca(2+) mobilization. Results of co-immunoprecipitation assays revealed binding of CHERP to a phosphorylated form of RNA polymerase II. Knockdown of CHERP or ALG-2 in HT1080 cells resulted in generation of alternatively spliced isoforms of the inositol 1,4,5-trisphosphate receptor 1 (IP3R1) pre-mRNA that included exons 41 and 42 in addition to the major isoform lacking exons 40-42. Furthermore, binding between CHERP and IP3R1 RNA was detected by an RNA immunoprecipitation assay using a polyclonal antibody against CHERP. These results indicate that CHERP and ALG-2 participate in regulation of alternative splicing of IP3R1 pre-mRNA and provide new insights into post-transcriptional regulation of splicing variants in Ca(2+) signaling pathways.
Braun,2013 (24043761) Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA "A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation." J Exp Med 2013 Sep 24
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite that resides inside a parasitophorous vacuole. During infection, Toxoplasma actively remodels the transcriptome of its hosting cells with profound and coupled impact on the host immune response. We report that Toxoplasma secretes GRA24, a novel dense granule protein which traffics from the vacuole to the host cell nucleus. Once released into the host cell, GRA24 has the unique ability to trigger prolonged autophosphorylation and nuclear translocation of the host cell p38alpha MAP kinase. This noncanonical kinetics of p38alpha activation correlates with the up-regulation of the transcription factors Egr-1 and c-Fos and the correlated synthesis of key proinflammatory cytokines, including interleukin-12 and the chemokine MCP-1, both known to control early parasite replication in vivo. Remarkably, the GRA24-p38alpha complex is defined by peculiar structural features and uncovers a new regulatory signaling path distinct from the MAPK signaling cascade and otherwise commonly activated by stress-related stimuli or various intracellular microbes.
De Nicola,2013 (24037507) De Nicola GF, Martin ED, Chaikuad A, Bassi R, Clark J, Martino L, Verma S, Sicard P, Tata R, Atkinson RA, Knapp S, Conte MR, Marber MS "Mechanism and consequence of the autoactivation of p38alpha mitogen-activated protein kinase promoted by TAB1." Nat Struct Mol Biol 2013 Oct 07
p38alpha mitogen-activated protein kinase (p38alpha) is activated by a variety of mechanisms, including autophosphorylation initiated by TGFbeta-activated kinase 1 binding protein 1 (TAB1) during myocardial ischemia and other stresses. Chemical-genetic approaches and coexpression in mammalian, bacterial and cell-free systems revealed that mouse p38alpha autophosphorylation occurs in cis by direct interaction with TAB1(371-416). In isolated rat cardiac myocytes and perfused mouse hearts, TAT-TAB1(371-416) rapidly activates p38 and profoundly perturbs function. Crystal structures and characterization in solution revealed a bipartite docking site for TAB1 in the p38alpha C-terminal kinase lobe. TAB1 binding stabilizes active p38alpha and induces rearrangements within the activation segment by helical extension of the Thr-Gly-Tyr motif, allowing autophosphorylation in cis. Interference with p38alpha recognition by TAB1 abolishes its cardiac toxicity. Such intervention could potentially circumvent the drawbacks of clinical pharmacological inhibitors of p38 catalytic activity.
Ran,2013 (24027329) Ran X, Bian X, Ji Y, Yan X, Yang F, Li F "White spot syndrome virus IE1 and WSV056 modulate the G1/S transition by binding to the host retinoblastoma protein." J Virol 2013 Nov 04
DNA viruses often target cellular proteins to modulate host cell cycles and facilitate viral genome replication. However, whether proliferation of white spot syndrome virus (WSSV) requires regulation of the host cell cycle remains unclear. In the present study, we show that two WSSV paralogs, IE1 and WSV056, can interact with Litopenaeus vannamei retinoblastoma (Rb)-like protein (lv-RBL) through the conserved LxCxE motif. Further investigation revealed that IE1 and WSV056 could also bind to Drosophila retinoblastoma family protein 1 (RBF1) in a manner similar to how they bind to lv-RBL. Using the Drosophila RBF-E2F pathway as a model system, we demonstrated that both IE1 and WSV056 could sequester RBF1 from Drosophila E2F transcription factor 1 (E2F1) and subsequently activate E2F1 to stimulate the G1/S transition. Our findings provide the first evidence that WSSV may regulate cell cycle progression by targeting the Rb-E2F pathway.
Ear,2013 (24019491) Ear PH, Booth MJ, Abd-Rabbo D, Kowarzyk Moreno J, Hall C, Chen D, Vogel J, Michnick SW "Dissection of Cdk1-cyclin complexes in vivo." Proc Natl Acad Sci U S A 2013 Sep 24
Cyclin-dependent kinases (Cdks) are regulatory enzymes with temporal and spatial selectivity for their protein substrates that are governed by cell cycle-regulated cyclin subunits. Specific cyclin-Cdk complexes bind to and phosphorylate target proteins, coupling their activity to cell cycle states. The identification of specific cyclin-Cdk substrates is challenging and so far, has largely been achieved through indirect correlation or use of in vitro techniques. Here, we use a protein-fragment complementation assay based on the optimized yeast cytosine deaminase to systematically identify candidate substrates of budding yeast Saccharomyces cerevisiae Cdk1 and show dependency on one or more regulatory cyclins. We identified known and candidate cyclin dependencies for many predicted protein kinase Cdk1 targets and showed elusory Clb3-Cdk1-specific phosphorylation of gamma-tubulin, thus establishing the timing of this event in controlling assembly of the mitotic spindle. Our strategy can be generally applied to identify substrates and accessory subunits of multisubunit protein complexes.
Gordon,2013 (23981301) Gordon EA, Whisenant TC, Zeller M, Kaake RM, Gordon WM, Krotee P, Patel V, Huang L, Baldi P, Bardwell L "Combining docking site and phosphosite predictions to find new substrates: identification of smoothelin-like-2 (SMTNL2) as a c-Jun N-terminal kinase (JNK) substrate." Cell Signal 2013 Oct 21
Specific docking interactions between mitogen-activated protein kinases (MAPKs), their regulators, and their downstream substrates, are crucial for efficient and accurate signal transmission. To identify novel substrates of the c-Jun N-terminal kinase (JNK) family of MAPKs, we searched the human genome for proteins that contained (1), a predicted JNK-docking site (D-site); and (2), a cluster of putative JNK target phosphosites located close to the D-site. Here we describe a novel JNK substrate that emerged from this analysis, the functionally uncharacterized protein smoothelin-like 2 (SMTNL2). SMTNL2 protein bound with high-affinity to multiple MAPKs including JNK1-3 and ERK2; furthermore, the identity of conserved amino acids in the predicted docking site (residues 180-193) was necessary for this high-affinity binding. In addition, purified full-length SMTNL2 protein was phosphorylated by JNK1-3 in vitro, and this required the integrity of the D-site. Using mass spectrometry and mutagenesis, we identified four D-site-dependent phosphoacceptor sites in close proximity to the docking site, at S217, S241, T236 and T239. A short peptide comprised of the SMTNL2 D-site inhibited JNK-mediated phosphorylation of the ATF2 transcription factor, showing that SMTNL2 can compete with other substrates for JNK binding. Moreover, when transfected into HEK293 cells, SMTNL2 was phosphorylated by endogenous JNK in a D-site dependent manner, on the same residues identified in vitro. SMTNL2 protein was expressed in many mammalian tissues, with a notably high expression in skeletal muscle. Consistent with the hypothesis that SMTNL2 has a function in skeletal muscle, SMTNL2 protein expression was strongly induced during the transition from myoblasts to myotubes in differentiating C2C12 cells.
Reddy Chichili,2013 (23942337) Reddy Chichili VP, Xiao Y, Seetharaman J, Cummins TR, Sivaraman J "Structural basis for the modulation of the neuronal voltage-gated sodium channel NaV1.6 by calmodulin." Sci Rep 2013
The neuronal-voltage gated sodium channel (VGSC), Na(V)1.6, plays an important role in propagating action potentials along myelinated axons. Calmodulin (CaM) is known to modulate the inactivation kinetics of Na(V)1.6 by interacting with its IQ motif. Here we report the crystal structure of apo-CaM:Na(V)1.6IQ motif, along with functional studies. The IQ motif of Na(V)1.6 adopts an alpha-helical conformation in its interaction with the C-lobe of CaM. CaM uses different residues to interact with Na(V)1.6IQ motif depending on the presence or absence of Ca(2)(+). Three residues from Na(V)1.6, Arg1902, Tyr1904 and Arg1905 were identified as the key common interacting residues in both the presence and absence of Ca(2)(+). Substitution of Arg1902 and Tyr1904 with alanine showed a reduced rate of Na(V)1.6 inactivation in electrophysiological experiments in vivo. Compared with other CaM:Na(V) complexes, our results reveal a different mode of interaction for CaM:Na(V)1.6 and provides structural insight into the isoform-specific modulation of VGSCs.
Esteban,2013 (23933132) Esteban V, Martin MJ, Blanco L "The BRCT domain and the specific loop 1 of human Polmu are targets of Cdk2/cyclin A phosphorylation." DNA Repair (Amst) 2013 Oct 14
Human family X polymerases contribute both to genomic stability and variability through their specialized functions in DNA repair. Polmu participates in the repair of spontaneous double strand breaks (DSB) by non homologous end-joining (NHEJ), and also in the V(D)J recombination process after programmed DSBs. Polmu plays this dual role due to its template-dependent and terminal transferase (template-independent) polymerization activities. In this study we evaluated if Polmu could be regulated by Cdk phosphorylation along the cell cycle. In vitro kinase assays showed that the S phase-associated Cdk2/cyclin A complex was able to phosphorylate Polmu. We identified Ser12, Thr21 (located in the BRCT domain) and Ser372 (located in loop1) as the target residues. Mutation of these residues to alanine indicated that Ser372 is the main phosphorylation site. Mobilization of loop1, which mediates DNA end micro-synapsis, is crucial both for terminal transferase and NHEJ. Interestingly, the phospho-mimicking S372E mutation specifically impaired these activities. Our evidences suggest that Polmu could be regulated in vivo by phosphorylation of the BRCT domain (Ser12/Thr21) and of Ser372, affecting the function of loop1. Consequently, Polmu's most distinctive activities would be turned off at specific cell-cycle phases (S and G2), when these promiscuous functions might be harmful to the cell.
Francis,2013 (23932588) Francis DM, Kumar GS, Koveal D, Tortajada A, Page R, Peti W "The differential regulation of p38alpha by the neuronal kinase interaction motif protein tyrosine phosphatases, a detailed molecular study." Structure 2013 Sep 09
The MAP kinase p38alpha is essential for neuronal signaling. To better understand the molecular regulation of p38alpha we used atomistic and molecular techniques to determine the structural basis of p38alpha regulation by the two neuronal tyrosine phosphatases, PTPSL/PTPBR7 (PTPRR) and STEP (PTPN5). We show that, despite the fact that PTPSL and STEP belong to the same family of regulatory proteins, they interact with p38alpha differently and their distinct molecular interactions explain their different catalytic activities. Although the interaction of PTPSL with p38alpha is similar to that of the previously described p38alpha:HePTP (PTPN7) complex, STEP binds and regulates p38alpha in an unexpected manner. Using NMR and small-angle X-ray scattering data, we generated a model of the p38alpha:STEP complex and define molecular differences between its resting and active states. Together, these results provide insights into molecular regulation of p38alpha by key regulatory proteins.
Okumura,2013 (23924735) Okumura M, Katsuyama AM, Shibata H, Maki M "VPS37 isoforms differentially modulate the ternary complex formation of ALIX, ALG-2, and ESCRT-I." Biosci Biotechnol Biochem 2013 Aug 27
The endosomal sorting complex required for transport (ESCRT) system comprises a series of protein complexes that play essential roles in multivesicular body (MVB) sorting of ubiquitylated membrane proteins, enveloped RNA virus budding, and cytokinesis in mammalian cells. The complex, named ESCRT-I, consists of four subunits (TSG101, VPS28, VPS37, and MVB12). There are four VPS37 isoforms. We have reported that ALIX (an ALG-2-interacting protein and accessory protein in the ESCRT system) is physically linked with TSG101 by ALG-2 in a Ca(2)(+)-dependent manner, but the role of ALG-2 as an adaptor protein for the ESCRT-I complex remains unknown. To characterize this adaptor function, initially we investigated the binding of ALG-2 to ESCRT-I complexes containing each one of the four different VPS37 isoforms by two approaches: first, Far-Western blot analysis with biotin-labeled ALG-2 probe, and second, a pulldown assay to determine the binding of the four recombinant ESCRT-I complexes to Strep-tagged ALG-2 after co-expression in HEK293T cells. VPS37B and VPS37C appeared to interact with ALG-2 in a stronger manner than TSG101 does. The results of in vitro binding assays using purified recombinant proteins indicated that ALG-2 functions as a Ca(2)(+)-dependent adaptor protein that bridges ALIX and ESCRT-I to form a ternary complex, ESCRT-I/ALIX/ALG-2.
Birgisdottir,2013 (23908376) Birgisdottir AB, Lamark T, Johansen T "The LIR motif - crucial for selective autophagy." J Cell Sci 2013 Aug 02
(Macro)autophagy is a fundamental degradation process for macromolecules and organelles of vital importance for cell and tissue homeostasis. Autophagy research has gained a strong momentum in recent years because of its relevance to cancer, neurodegenerative diseases, muscular dystrophy, lipid storage disorders, development, ageing and innate immunity. Autophagy has traditionally been thought of as a bulk degradation process that is mobilized upon nutritional starvation to replenish the cell with building blocks and keep up with the energy demand. This view has recently changed dramatically following an array of papers describing various forms of selective autophagy. A main driving force has been the discovery of specific autophagy receptors that sequester cargo into forming autophagosomes (phagophores). At the heart of this selectivity lies the LC3-interacting region (LIR) motif, which ensures the targeting of autophagy receptors to LC3 (or other ATG8 family proteins) anchored in the phagophore membrane. LIR-containing proteins include cargo receptors, members of the basal autophagy apparatus, proteins associated with vesicles and of their transport, Rab GTPase-activating proteins (GAPs) and specific signaling proteins that are degraded by selective autophagy. Here, we comment on these new insights and focus on the interactions of LIR-containing proteins with members of the ATG8 protein family.
Cino,2013 (23892546) Cino EA, Killoran RC, Karttunen M, Choy WY "Binding of disordered proteins to a protein hub." Sci Rep 2013 Jul 29
A small number of proteins, called hubs, have high connectivity and are essential for interactome functionality and integrity. Keap1 is a crucial hub in the oxidative stress response and apoptosis. The Kelch domain of Keap1 preferentially binds to disordered regions of its partners, which share similar binding motifs, but have a wide range of binding affinities. Isothermal titration calorimetry (ITC) and multi-microsecond molecular dynamics (MD) simulations were used to determine the factors that govern the affinity of all currently known disordered binding partners to Kelch. Our results show that the affinities to this hub are largely determined by the extent of preformed bound state-like conformation in the free state structures of these disordered targets. Based on our findings, we have designed a high-affinity peptide that can specifically disrupt the Keap1-NRF2 interaction and has the potential for therapeutic applications.
Andersen,2013 (23881912) Andersen OM, Dagil R, Kragelund BB "New horizons for lipoprotein receptors: communication by beta-propellers." J Lipid Res 2013 Sep 12
The lipoprotein receptor (LR) family constitutes a large group of structurally closely related receptors with broad ligand-binding specificity. Traditionally, ligand binding to LRs has been anticipated to involve merely the complement type repeat (CR)-domains omnipresent in the family. Recently, this dogma has transformed with the observation that beta-propellers of some LRs actively engage in complex formation too. Based on an in-depth decomposition of current structures and sequences, we suggest that exploitation of the beta-propellers as binding targets depends on receptor subgroups. In particular, we highlight the shutter mechanism of beta-propellers as a general recognition motif for NxI-containing ligands, and we present indications that the generalized beta-propeller-induced ligand release mechanism is not applicable for the larger LRs. For the giant LR members, we present evidence that their beta-propellers may also actively engage in ligand binding. We therefore advocate for an increased focus on solving the structure-function relationship of this group of important biological receptors.
LaConte,2013 (23863172) LaConte L, Mukherjee K "Structural constraints and functional divergences in CASK evolution." Biochem Soc Trans 2013 Jul 18
CASK (Ca2+/calmodulin-activated serine kinase) is a synaptic protein that interacts with the cytosolic tail of adhesion molecules such as neurexins, syncam and syndecans. It belongs to the MAGUK (membrane-associated guanylate kinase) family of scaffolding proteins which are known to decorate cell-cell junctions. CASK is an essential gene in mammals, critical for neurodevelopment. Mutations in the CASK gene in humans result in phenotypes that range from intellectual disability to lethality. Despite its importance, CASK has a single genetic isoform located in the short arm of the X chromosome near an evolutionary breakpoint. Surprisingly, CASK is a non-essential gene in invertebrates and displays functional divergence. In the present article, we describe the phylogenetic differences in existing CASK orthologues. The CASK gene has undergone a huge expansion in size (~55-fold). Almost all of this expansion is a direct result of an increase in the size of the introns. The coding region of CASK orthologues, and hence the protein, exhibit a high degree of evolutionary conservation. Within the protein, domain arrangement is completely conserved and substitution rates are higher in the connecting loop regions [L27 (Lin2, Lin7)] than within the domain. Our analyses of single residue substitutions and genotype-phenotype relationships suggest that, other than intronic expansion, the dramatic functional changes of CASK are driven by subtle (non-radical) primary structure changes within the CASK protein and concomitant changes in its protein interactors.
Yin,2013 (23850291) Yin Q, Sester DP, Tian Y, Hsiao YS, Lu A, Cridland JA, Sagulenko V, Thygesen SJ, Choubey D, Hornung V, Walz T, Stacey KJ, Wu H "Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation." Cell Rep 2013 Jul 29
Mouse p202 containing two hemopoietic expression, interferon inducibility, nuclear localization (HIN) domains antagonizes AIM2 inflammasome signaling and potentially modifies lupus susceptibility. We found that only HIN1 of p202 binds double-stranded DNA (dsDNA), while HIN2 forms a homotetramer. Crystal structures of HIN1 revealed that dsDNA is bound on face opposite the site used in AIM2 and IFI16. The structure of HIN2 revealed a dimer of dimers, the face analogous to the HIN1 dsDNA binding site being a dimerization interface. Electron microscopy imaging showed that HIN1 is flexibly linked to HIN2 in p202, and tetramerization provided enhanced avidity for dsDNA. Surprisingly, HIN2 of p202 interacts with the AIM HIN domain. We propose that this results in a spatial separation of the AIM2 pyrin domains, and indeed p202 prevented the dsDNA-dependent clustering of apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) and AIM2 inflammasome activation. We hypothesize that while p202 was evolutionarily selected to limit AIM2-mediated inflammation in some mouse strains, the same mechanism contributes to increased interferon production and lupus susceptibility.
Takahashi,2013 (23838290) Takahashi D, Mori T, Wakabayashi M, Mori Y, Susa K, Zeniya M, Sohara E, Rai T, Sasaki S, Uchida S "KLHL2 interacts with and ubiquitinates WNK kinases." Biochem Biophys Res Commun 2013 Aug 01
Mutations in the WNK1 and WNK4 genes result in an inherited hypertensive disease, pseudohypoaldosteronism type II (PHAII). Recently, the KLHL3 and Cullin3 genes were also identified as responsible genes for PHAII. Although we have reported that WNK4 is a substrate for the KLHL3-Cullin3 E3 ligase complex, it is not clear whether all of the WNK isoforms are regulated only by KLHL3. To explore the interaction of WNKs and other Kelch-like proteins, we focused on KLHL2 (Mayven), a human homolog of Drosophila Kelch that shares the highest similarity with KLHL3. We found that KLHL2, as well as KLHL3, was co-immunoprecipitated with all four WNK isoforms. The direct interaction of KLHL2 with WNKs was confirmed on fluorescence correlation spectroscopy. Co-expression of KLHL2 and Cullin3 decreased the abundance of WNK1, WNK3 and WNK4 within HEK293T cells, and a significant increase of WNK4 ubiquitination by KLHL2 and Cullin3 was observed both in HEK293T cells and in an in vitro ubiquitination assay. These results suggest that KLHL2-Cullin3 also functions as an E3-ligase for WNK isoforms within the body.
Molzan,2013 (23808890) Molzan M, Kasper S, Roglin L, Skwarczynska M, Sassa T, Inoue T, Breitenbuecher F, Ohkanda J, Kato N, Schuler M, Ottmann C "Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers." ACS Chem Biol 2013 Sep 23
One-third of all human cancers harbor somatic RAS mutations. This leads to aberrant activation of downstream signaling pathways involving the RAF kinases. Current ATP-competitive RAF inhibitors are active in cancers with somatic RAF mutations, such as BRAF(V600) mutant melanomas. However, they paradoxically promote the growth of RAS mutant tumors, partly due to the complex interplay between different homo- and heterodimers of A-RAF, B-RAF, and C-RAF. Based on pathway analysis and structure-guided compound identification, we describe the natural product cotylenin-A (CN-A) as stabilizer of the physical interaction of C-RAF with 14-3-3 proteins. CN-A binds to inhibitory 14-3-3 interaction sites of C-RAF, pSer233, and pSer259, but not to the activating interaction site, pSer621. While CN-A alone is inactive in RAS mutant cancer models, combined treatment with CN-A and an anti-EGFR antibody synergistically suppresses tumor growth in vitro and in vivo. This defines a novel pharmacologic strategy for treatment of RAS mutant cancers.
Rogov,2013 (23805866) Rogov VV, Suzuki H, Fiskin E, Wild P, Kniss A, Rozenknop A, Kato R, Kawasaki M, McEwan DG, Lohr F, Guntert P, Dikic I, Wakatsuki S, Dotsch V "Structural basis for phosphorylation-triggered autophagic clearance of Salmonella." Biochem J 2013 Oct 10
Selective autophagy is mediated by the interaction of autophagy modifiers and autophagy receptors that also bind to ubiquitinated cargo. Optineurin is an autophagy receptor that plays a role in the clearance of cytosolic Salmonella. The interaction between receptors and modifiers is often relatively weak, with typical values for the dissociation constant in the low micromolar range. The interaction of optineurin with autophagy modifiers is even weaker, but can be significantly enhanced through phosphorylation by the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor kappaB activator]-binding kinase 1}. In the present study we describe the NMR and crystal structures of the autophagy modifier LC3B (microtubule-associated protein light chain 3 beta) in complex with the LC3 interaction region of optineurin either phosphorylated or bearing phospho-mimicking mutations. The structures show that the negative charge induced by phosphorylation is recognized by the side chains of Arg(1)(1) and Lys(5)(1) in LC3B. Further mutational analysis suggests that the replacement of the canonical tryptophan residue side chain of autophagy receptors with the smaller phenylalanine side chain in optineurin significantly weakens its interaction with the autophagy modifier LC3B. Through phosphorylation of serine residues directly N-terminally located to the phenylalanine residue, the affinity is increased to the level normally seen for receptor-modifier interactions. Phosphorylation, therefore, acts as a switch for optineurin-based selective autophagy.
Schaff,2013 (23797810) Schaff M, Tang C, Maurer E, Bourdon C, Receveur N, Eckly A, Hechler B, Arnold C, de Arcangelis A, Nieswandt B, Denis CV, Lefebvre O, Georges-Labouesse E, Gachet C, Lanza F, Mangin PH "Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis." Circulation 2013 Jul 30
BACKGROUND: Laminins are major components of basement membranes, well located to interact with platelets upon vascular injury. Laminin-111 (alpha1beta1gamma1) is known to support platelet adhesion but is absent from most blood vessels, which contain isoforms with the alpha2, alpha4, or alpha5 chain. Whether vascular laminins support platelet adhesion and activation and the significance of these interactions in hemostasis and thrombosis remain unknown. METHODS AND RESULTS: Using an in vitro flow assay, we show that laminin-411 (alpha4beta1gamma1), laminin-511 (alpha5beta1gamma1), and laminin-521 (alpha5beta2gamma1), but not laminin-211 (alpha2beta1gamma1), allow efficient platelet adhesion and activation across a wide range of arterial wall shear rates. Adhesion was critically dependent on integrin alpha6beta1 and the glycoprotein Ib-IX complex, which binds to plasmatic von Willebrand factor adsorbed on laminins. Glycoprotein VI did not participate in the adhesive process but mediated platelet activation induced by alpha5-containing laminins. To address the significance of platelet/laminin interactions in vivo, we developed a platelet-specific knockout of integrin alpha6. Platelets from these mice failed to adhere to laminin-411, laminin-511, and laminin-521 but responded normally to a series of agonists. alpha6beta1-Deficient mice presented a marked decrease in arterial thrombosis in 3 models of injury of the carotid, aorta, and mesenteric arterioles. The tail bleeding time and blood loss remained unaltered, indicating normal hemostasis. CONCLUSIONS: This study reveals an unsuspected important contribution of laminins to thrombus formation in vivo and suggests that targeting their main receptor, integrin alpha6beta1, could represent an alternative antithrombotic strategy with a potentially low bleeding risk.
Xu,2013 (23789096) Xu P, Raetz EA, Kitagawa M, Virshup DM, Lee SH "BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression." Biol Open 2013 Jun 21
BUBR1 is a mitotic phosphoprotein essential for the maintenance of chromosome stability by promoting chromosome congression and proper kinetochore-microtubule (K-fiber) attachment, but the underlying mechanism(s) has remained elusive. Here we identify BUBR1 as a binding partner of the B56 family of Protein Phosphatase 2A regulatory subunits. The interaction between BUBR1 and the B56 family is required for chromosome congression, since point mutations in BUBR1 that block B56 binding abolish chromosome congression. The BUBR1:B56-PP2A complex opposes Aurora B kinase activity, since loss of the complex can be reverted by inhibiting Aurora B. Importantly, we show that the failure of BUBR1 to recruit B56-PP2A also contributes to the chromosome congression defects found in cells derived from patients with the Mosaic Variegated Aneuploidy (MVA) syndrome. Together, we propose that B56-PP2A is a key mediator of BUBR1's role in chromosome congression and functions by antagonizing Aurora B activity at the kinetochore for establishing stable kinetochore-microtubule attachment at the metaphase plate.
McCubrey,2014 (23778311) McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Abrams SL, Montalto G, D'Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Cocco L, Cervello M, Martelli AM "Multifaceted roles of GSK-3 and Wnt/beta-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention." Leukemia 2014 Jan 08
Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/beta-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets.
Bonet,2013 (23763993) Bonet R, Vakonakis I, Campbell ID "Characterization of 14-3-3-zeta Interactions with integrin tails." J Mol Biol 2013 Aug 13
Integrins are a family of heterodimeric (alpha+beta) adhesion receptors that play key roles in many cellular processes. Integrins are unusual in that their functions can be modulated from both outside and inside the cell. Inside-out signaling is mediated by binding adaptor proteins to the flexible cytoplasmic tails of the alpha- and beta-integrin subunits. Talin is one well-known intracellular activator, but various other adaptors bind to integrin tails, including 14-3-3-zeta, a member of the 14-3-3 family of dimeric proteins that have a preference for binding phosphorylated sequence motifs. Phosphorylation of a threonine in the beta2 integrin tail has been shown to modulate beta2/14-3-3-zeta interactions, and recently, the alpha4 integrin tail was reported to bind to 14-3-3-zeta and associate with paxillin in a ternary complex that is regulated by serine phosphorylation. Here, we use a range of biophysical techniques to characterize interactions between 14-3-3-zeta and the cytoplasmic tails of alpha4, beta1, beta2 and beta3 integrins. The X-ray structure of the 14-3-3-zeta/alpha4 complex indicates a canonical binding mode for the alpha4 phospho-peptide, but unexpected features are also observed: residues outside the consensus 14-3-3-zeta binding motif are shown to be essential for an efficient interaction; in contrast, a short beta2 phospho-peptide is sufficient for high-affinity binding to 14-3-3-zeta. In addition, we report novel 14-3-3-zeta/integrin tail interactions that are independent of phosphorylation. Of the integrin tails studied, the strongest interaction with 14-3-3-zeta is observed for the beta1A variant. In summary, new insights about 14-3-3-zeta/integrin tail interactions that have implications for the role of these molecular associations in cells are described.
Qian,2013 (23746640) Qian J, Beullens M, Lesage B, Bollen M "Aurora B defines its own chromosomal targeting by opposing the recruitment of the phosphatase scaffold Repo-Man." Curr Biol 2013 Jun 21
Aurora B is the catalytic subunit of the chromosomal passenger complex (CPC), which coordinates mitotic processes through phosphorylation of key regulatory proteins. In prometaphase, the CPC is enriched at the centromeres to regulate the spindle checkpoint and kinetochore-microtubule interactions. Centromeric CPC binds to histone H3 that is phosphorylated at T3 (H3T3ph) by Aurora B-stimulated Haspin. PP1/Repo-Man acts antagonistically to Haspin and dephosphorylates H3T3ph at the chromosome arms but is somehow prevented from causing a net dephosphorylation of centromeric H3T3ph during prometaphase. Here, we show that Aurora B phosphorylates Repo-Man at S893, preventing its recruitment by histones. We also identify PP2A as a mitotic interactor of Repo-Man that dephosphorylates S893 and thereby promotes the targeting of Repo-Man to chromosomes and the dephosphorylation of H3T3ph by PP1. Thus, Repo-Man-associated PP1 and PP2A collaborate to oppose the chromosomal targeting of Aurora B. We propose that the reciprocal feedback regulation of Haspin and Repo-Man by Aurora B generates a robust bistable response that culminates in the centromeric targeting of the CPC during prometaphase.
Thandapani,2013 (23746349) Thandapani P, O'Connor TR, Bailey TL, Richard S "Defining the RGG/RG motif." Mol Cell 2013 Jun 6
Motifs rich in arginines and glycines were recognized several decades ago to play functional roles and were termed glycine-arginine-rich (GAR) domains and/or RGG boxes. We review here the evolving functions of the RGG box along with several sequence variations that we collectively term the RGG/RG motif. Greater than 1,000 human proteins harbor the RGG/RG motif, and these proteins influence numerous physiological processes such as transcription, pre-mRNA splicing, DNA damage signaling, mRNA translation, and the regulation of apoptosis. In particular, we discuss the role of the RGG/RG motif in mediating nucleic acid and protein interactions, a function that is often regulated by arginine methylation and partner-binding proteins. The physiological relevance of the RGG/RG motif is highlighted by its association with several diseases including neurological and neuromuscular diseases and cancer. Herein, we discuss the evidence for the emerging diverse functionality of this important motif.
Marti,2013 (23725671) Marti M, Spielmann T "Protein export in malaria parasites: many membranes to cross." Curr Opin Microbiol 2013 Aug
The continuous multiplication of Plasmodium parasites in red blood cells leads to a rapid increase in parasite numbers and is responsible for the disease symptoms of malaria. Survival and virulence of the parasite are linked to parasite-induced changes of the host red blood cells. These alterations require export of a large number of parasite proteins that are trafficked across multiple membranes to reach the host cell. Two classes of exported proteins are known, those with a conserved Plasmodium export element (PEXEL/HT) or those without this motif (PNEPs). Recent work has revealed new aspects of the determinants required for export of these 2 protein classes, shedding new light on the mode of trafficking during the different transport steps en route to the host cell.
He,2013 (23707760) He J, Chao WC, Zhang Z, Yang J, Cronin N, Barford D "Insights into degron recognition by APC/C coactivators from the structure of an Acm1-Cdh1 complex." Mol Cell 2013 Jun 10
The anaphase-promoting complex/cyclosome (APC/C) regulates sister chromatid segregation and the exit from mitosis. Selection of most APC/C substrates is controlled by coactivator subunits (either Cdc20 or Cdh1) that interact with substrate destruction motifs--predominantly the destruction (D) box and KEN box degrons. How coactivators recognize D box degrons and how this is inhibited by APC/C regulatory proteins is not defined at the atomic level. Here, from the crystal structure of S. cerevisiae Cdh1 in complex with its specific inhibitor Acm1, which incorporates D and KEN box pseudosubstrate motifs, we describe the molecular basis for D box recognition. Additional interactions between Acm1 and Cdh1 identify a third protein-binding site on Cdh1 that is likely to confer coactivator-specific protein functions including substrate association. We provide a structural rationalization for D box and KEN box recognition by coactivators and demonstrate that many noncanonical APC/C degrons bind APC/C coactivators at the D box coreceptor.
Dhanoa,2013 (23676014) Dhanoa BS, Cogliati T, Satish AG, Bruford EA, Friedman JS "Update on the Kelch-like (KLHL) gene family." Hum Genomics 2013 May 21
The Kelch-like (KLHL) gene family encodes a group of proteins that generally possess a BTB/POZ domain, a BACK domain, and five to six Kelch motifs. BTB domains facilitate protein binding and dimerization. The BACK domain has no known function yet is of functional importance since mutations in this domain are associated with disease. Kelch domains form a tertiary structure of beta-propellers that have a role in extracellular functions, morphology, and binding to other proteins. Presently, 42 KLHL genes have been classified by the HUGO Gene Nomenclature Committee (HGNC), and they are found across multiple human chromosomes. The KLHL family is conserved throughout evolution. Phylogenetic analysis of KLHL family members suggests that it can be subdivided into three subgroups with KLHL11 as the oldest member and KLHL9 as the youngest. Several KLHL proteins bind to the E3 ligase cullin 3 and are known to be involved in ubiquitination. KLHL genes are responsible for several Mendelian diseases and have been associated with cancer. Further investigation of this family of proteins will likely provide valuable insights into basic biology and human disease.
Soundararajan,2013 (23665168) Soundararajan M, Roos AK, Savitsky P, Filippakopoulos P, Kettenbach AN, Olsen JV, Gerber SA, Eswaran J, Knapp S, Elkins JM "Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition." Structure 2013 Jun 4
Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK subfamily: DYRK1A with an ATP-mimetic inhibitor and consensus peptide, and DYRK2 including NAPA and DH (DYRK homology) box regions. The current activation model suggests that DYRKs are Ser/Thr kinases that only autophosphorylate the second tyrosine of the activation loop YxY motif during protein translation. The structures explain the roles of this tyrosine and of the DH box in DYRK activation and provide a structural model for DYRK substrate recognition. Phosphorylation of a library of naturally occurring peptides identified substrate motifs that lack proline in the P+1 position, suggesting that DYRK1A is not a strictly proline-directed kinase. Our data also show that DYRK1A wild-type and Y321F mutant retain tyrosine autophosphorylation activity.
Wu,2013 (23665031) Wu G, Peng JB "Disease-causing mutations in KLHL3 impair its effect on WNK4 degradation." FEBS Lett 2013 Jun 14
Mutations in with-no-lysine (K) kinase 4 (WNK4) and a ubiquitin E3 ligase complex component kelch-like 3 (KLHL3) both cause pseudohypoaldosteronism II (PHAII), a hereditary form of hypertension. We determined whether WNK4 or its effector is regulated by KLHL3 in Xenopus oocytes. KLHL3 inhibited the positive effect of WNK4 on Na(+)-Cl(-) cotransporter (NCC) by decreasing WNK4 protein abundance without decreasing that of NCC and the downstream kinase OSR1 directly. Ubiquitination and degradation of WNK4 were induced by KLHL3. The effect of KLHL3 on WNK4 degradation was blocked by a dominant negative form of cullin 3. All five PHAII mutations of KLHL3 tested disrupted the regulation on WNK4. We conclude that KLHL3 is a substrate adaptor for WNK4 in a ubiquitin E3 ligase complex.
Jung,2013 (23650370) Jung HJ, Nobumori C, Goulbourne CN, Tu Y, Lee JM, Tatar A, Wu D, Yoshinaga Y, de Jong PJ, Coffinier C, Fong LG, Young SG "Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration." Proc Natl Acad Sci U S A 2013 May 21
The role of protein farnesylation in lamin A biogenesis and the pathogenesis of progeria has been studied in considerable detail, but the importance of farnesylation for the B-type lamins, lamin B1 and lamin B2, has received little attention. Lamins B1 and B2 are expressed in nearly every cell type from the earliest stages of development, and they have been implicated in a variety of functions within the cell nucleus. To assess the importance of protein farnesylation for B-type lamins, we created knock-in mice expressing nonfarnesylated versions of lamin B1 and lamin B2. Mice expressing nonfarnesylated lamin B2 developed normally and were free of disease. In contrast, mice expressing nonfarnesylated lamin B1 died soon after birth, with severe neurodevelopmental defects and striking nuclear abnormalities in neurons. The nuclear lamina in migrating neurons was pulled away from the chromatin so that the chromatin was left "naked" (free from the nuclear lamina). Thus, farnesylation of lamin B1--but not lamin B2--is crucial for brain development and for retaining chromatin within the bounds of the nuclear lamina during neuronal migration.
Wang,2013 (23636324) Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC "Structure of the human smoothened receptor bound to an antitumour agent." Nature 2013 May 16
The smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.5 A resolution. Although the SMO receptor shares the seven-transmembrane helical fold, most of the conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds. The ligand binds at the extracellular end of the seven-transmembrane-helix bundle and forms extensive contacts with the loops.
Taiakina,2013 (23626724) Taiakina V, Boone AN, Fux J, Senatore A, Weber-Adrian D, Guillemette JG, Spafford JD "The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels." PLoS One 2013 Apr 29
NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca(2+) concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca(2+)-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.
Anders,2013 (23601647) Anders C, Higuchi Y, Koschinsky K, Bartel M, Schumacher B, Thiel P, Nitta H, Preisig-Muller R, Schlichthorl G, Renigunta V, Ohkanda J, Daut J, Kato N, Ottmann C "A semisynthetic fusicoccane stabilizes a protein-protein interaction and enhances the expression of K+ channels at the cell surface." Chem Biol 2013 Apr 22
Small-molecule stabilization of protein-protein interactions is an emerging field in chemical biology. We show how fusicoccanes, originally identified as fungal toxins acting on plants, promote the interaction of 14-3-3 proteins with the human potassium channel TASK-3 and present a semisynthetic fusicoccane derivative (FC-THF) that targets the 14-3-3 recognition motif (mode 3) in TASK-3. In the presence of FC-THF, the binding of 14-3-3 proteins to TASK-3 was increased 19-fold and protein crystallography provided the atomic details of the effects of FC-THF on this interaction. We also tested the functional effects of FC-THF on TASK channels heterologously expressed in Xenopus oocytes. Incubation with 10 muM FC-THF was found to promote the transport of TASK channels to the cell membrane, leading to a significantly higher density of channels at the surface membrane and increased potassium current.
Tidow,2013 (23601118) Tidow H, Nissen P "Structural diversity of calmodulin binding to its target sites." FEBS J 2013 Oct 16
Calmodulin (CaM) is a ubiquitous, highly conserved, eukaryotic protein that binds to and regulates a number of diverse target proteins involved in different functions such as metabolism, muscle contraction, apoptosis, memory, inflammation and the immune response. In this minireview, we analyze the large number of CaM-complex structures deposited in the Protein Data Bank (i.e. crystal and nuclear magnetic resonance structures) to gain insight into the structural diversity of CaM-binding sites and mechanisms, such as those for CaM-activated protein kinases and phosphatases, voltage-gated Ca(2+)-channels and the plasma membrane Ca(2+)-ATPase.
Jia,2013 (23598156) Jia L, Kim S, Yu H "Tracking spindle checkpoint signals from kinetochores to APC/C." Trends Biochem Sci 2013 May 27
Accurate chromosome segregation during mitosis is critical for maintaining genomic stability. The kinetochore--a large protein assembly on centromeric chromatin--functions as the docking site for spindle microtubules and a signaling hub for the spindle checkpoint. At metaphase, spindle microtubules from opposing spindle poles capture each pair of sister kinetochores, exert pulling forces, and create tension across sister kinetochores. The spindle checkpoint detects improper kinetochore-microtubule attachments and translates these defects into biochemical activities that inhibit the anaphase-promoting complex or cyclosome (APC/C) throughout the cell to delay anaphase onset. A deficient spindle checkpoint leads to premature sister-chromatid separation and aneuploidy. Here, we review recent progress on the generation, propagation, transmission, and silencing of the spindle checkpoint signals from kinetochores to APC/C.
Primorac,2013 (23589490) Primorac I, Musacchio A "Panta rhei: the APC/C at steady state." J Cell Biol 2013 Apr 16
The anaphase-promoting complex or cyclosome (APC/C) is a conserved, multisubunit E3 ubiquitin (Ub) ligase that is active both in dividing and in postmitotic cells. Its contributions to life are especially well studied in the domain of cell division, in which the APC/C lies at the epicenter of a regulatory network that controls the directionality and timing of cell cycle events. Biochemical and structural work is shedding light on the overall organization of APC/C subunits and on the mechanism of substrate recognition and Ub chain initiation and extension as well as on the molecular mechanisms of a checkpoint that seizes control of APC/C activity during mitosis. Here, we review how these recent advancements are modifying our understanding of the APC/C.
McCullough,2013 (23527693) McCullough J, Colf LA, Sundquist WI "Membrane Fission Reactions of the Mammalian ESCRT Pathway." Annu Rev Biochem 2013 Mar 26
The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission. Expected final online publication date for the Annual Review of Biochemistry Volume 82 is June 02, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Gogl,2013 (23519423) Gogl G, Toro I, Remenyi A "Protein-peptide complex crystallization: a case study on the ERK2 mitogen-activated protein kinase." Acta Crystallogr D Biol Crystallogr 2013 Mar 22
Linear motifs normally bind with only medium binding affinity (Kd of approximately 0.1-10 microM) to shallow protein-interaction surfaces on their binding partners. The crystallization of proteins in complex with linear motif-containing peptides is often challenging because the energy gained upon crystal packing between symmetry mates in the crystal may be on a par with the binding energy of the protein-peptide complex. Furthermore, for extracellular signal-regulated kinase 2 (ERK2) the protein-peptide docking surface is comprised of a small hydrophobic surface patch that is often engaged in the crystal packing of apo ERK2 crystals. Here, a rational surface-engineering approach is presented that involves mutating protein surface residues that are distant from the peptide-binding ERK2 docking groove to alanines. These ERK2 surface mutations decrease the chance of `unwanted' crystal packing of ERK2 and the approach led to the structure determination of ERK2 in complex with new docking peptides. These findings highlight the importance of negative selection in crystal engineering for weakly binding protein-peptide complexes.
Pernigo,2013 (23519214) Pernigo S, Lamprecht A, Steiner RA, Dodding MP "Structural basis for kinesin-1:cargo recognition." Science 2013 Apr 19
Kinesin-mediated cargo transport is required for many cellular functions and plays a key role in pathological processes. Structural information on how kinesins recognize their cargoes is required for a molecular understanding of this fundamental and ubiquitous process. Here, we present the crystal structure of the tetratricopeptide repeat domain of kinesin light chain 2 in complex with a cargo peptide harboring a "tryptophan-acidic" motif derived from SKIP (SifA-kinesin interacting protein), a critical host determinant in Salmonella pathogenesis and a regulator of lysosomal positioning. Structural data together with biophysical, biochemical, and cellular assays allow us to propose a framework for intracellular transport based on the binding by kinesin-1 of W-acidic cargo motifs through a combination of electrostatic interactions and sequence-specific elements, providing direct molecular evidence of the mechanisms for kinesin-1:cargo recognition.
Slupe,2013 (23486469) Slupe AM, Merrill RA, Flippo KH, Lobas MA, Houtman JC, Strack S "A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury." J Biol Chem 2013 Apr 29
Fission and fusion events dynamically control the shape and function of mitochondria. The activity of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) is finely tuned by several post-translational modifications. Phosphorylation of Ser-656 by cAMP-dependent protein kinase (PKA) inhibits Drp1, whereas dephosphorylation by a mitochondrial protein phosphatase 2A isoform and the calcium-calmodulin-dependent phosphatase calcineurin (CaN) activates Drp1. Here, we identify a conserved CaN docking site on Drp1, an LXVP motif, which mediates the interaction between the phosphatase and mechanoenzyme. We mutated the LXVP motif in Drp1 to either increase or decrease similarity to the prototypical LXVP motif in the transcription factor NFAT, and assessed stability of the mutant Drp1-CaN complexes by affinity precipitation and isothermal titration calorimetry. Furthermore, we quantified effects of LXVP mutations on Drp1 dephosphorylation kinetics in vitro and in intact cells. With tools for bidirectional control of the CaN-Drp1 signaling axis in hand, we demonstrate that the Drp1 LXVP motif shapes mitochondria in neuronal and non-neuronal cells, and that CaN-mediated Drp1 dephosphorylation promotes neuronal death following oxygen-glucose deprivation. These results point to the CaN-Drp1 complex as a potential target for neuroprotective therapy of ischemic stroke.
Grigoriu,2013 (23468591) Grigoriu S, Bond R, Cossio P, Chen JA, Ly N, Hummer G, Page R, Cyert MS, Peti W "The molecular mechanism of substrate engagement and immunosuppressant inhibition of calcineurin." PLoS Biol 2013 Mar 07
Ser/thr phosphatases dephosphorylate their targets with high specificity, yet the structural and sequence determinants of phosphosite recognition are poorly understood. Calcineurin (CN) is a conserved Ca(2+)/calmodulin-dependent ser/thr phosphatase and the target of immunosuppressants, FK506 and cyclosporin A (CSA). To investigate CN substrate recognition we used X-ray crystallography, biochemistry, modeling, and in vivo experiments to study A238L, a viral protein inhibitor of CN. We show that A238L competitively inhibits CN by occupying a critical substrate recognition site, while leaving the catalytic center fully accessible. Critically, the 1.7 A structure of the A238L-CN complex reveals how CN recognizes residues in A238L that are analogous to a substrate motif, "LxVP." The structure enabled modeling of a peptide substrate bound to CN, which predicts substrate interactions beyond the catalytic center. Finally, this study establishes that "LxVP" sequences and immunosuppressants bind to the identical site on CN. Thus, FK506, CSA, and A238L all prevent "LxVP"-mediated substrate recognition by CN, highlighting the importance of this interaction for substrate dephosphorylation. Collectively, this work presents the first integrated structural model for substrate selection and dephosphorylation by CN and lays the groundwork for structure-based development of new CN inhibitors.
Gueneau,2013 (23435383) Gueneau E, Dherin C, Legrand P, Tellier-Lebegue C, Gilquin B, Bonnesoeur P, Londino F, Quemener C, Le Du MH, Marquez JA, Moutiez M, Gondry M, Boiteux S, Charbonnier JB "Structure of the MutLalpha C-terminal domain reveals how Mlh1 contributes to Pms1 endonuclease site." Nat Struct Mol Biol 2013 Apr
Mismatch-repair factors have a prominent role in surveying eukaryotic DNA-replication fidelity and in ensuring correct meiotic recombination. These functions depend on MutL-homolog heterodimers with Mlh1. In humans, MLH1 mutations underlie half of hereditary nonpolyposis colorectal cancers (HNPCCs). Here we report crystal structures of the MutLalpha (Mlh1-Pms1 heterodimer) C-terminal domain (CTD) from Saccharomyces cerevisiae, alone and in complex with fragments derived from Mlh1 partners. These structures reveal structural rearrangements and additional domains in MutLalpha as compared to the bacterial MutL counterparts and show that the strictly conserved C terminus of Mlh1 forms part of the Pms1 endonuclease site. The structures of the ternary complexes between MutLalpha(CTD) and Exo1 or Ntg2 fragments reveal the binding mode of the MIP-box motif shared by several Mlh1 partners. Finally, the structures provide a rationale for the deleterious impact of MLH1 mutations in HNPCCs.
Schmidt,2013 (23417976) Schmidt K, Butler JS "Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity." Wiley Interdiscip Rev RNA 2013 Feb 20
The advent of high-throughput sequencing technologies has revealed that pervasive transcription generates RNAs from nearly all regions of eukaryotic genomes. Normally, these transcripts undergo rapid degradation by a nuclear RNA surveillance system primarily featuring the RNA exosome. This multimeric protein complex plays a critical role in the efficient turnover and processing of a vast array of RNAs in the nucleus. Despite its initial discovery over a decade ago, important questions remain concerning the mechanisms that recruit and activate the nuclear exosome. Specificity and modulation of exosome activity requires additional protein cofactors, including the conserved TRAMP polyadenylation complex. Recent studies suggest that helicase and RNA-binding subunits of TRAMP direct RNA substrates for polyadenylation, which enhances their degradation by Dis3/Rrp44 and Rrp6, the two exosome-associated ribonucleases. These findings indicate that the exosome and TRAMP have evolved highly flexible functions that allow recognition of a wide range of RNA substrates. This flexibility provides the nuclear RNA surveillance system with the ability to regulate the levels of a broad range of coding and noncoding RNAs, which results in profound effects on gene expression, cellular development, gene silencing, and heterochromatin formation. This review summarizes recent findings on the nuclear RNA surveillance complexes, and speculates upon possible mechanisms for TRAMP-mediated substrate recognition and exosome activation.
Song,2013 (23413029) Song D, Li LS, Heaton-Johnson KJ, Arsenault PR, Master SR, Lee FS "Prolyl hydroxylase domain protein 2 (PHD2) binds a Pro-Xaa-Leu-Glu motif, linking it to the heat shock protein 90 pathway." J Biol Chem 2013 Apr 08
Prolyl hydroxylase domain protein 2 (PHD2, also known as Egg Laying Defective Nine homolog 1) is a key oxygen-sensing protein in metazoans. In an oxygen-dependent manner, PHD2 site-specifically prolyl hydroxylates the master transcription factor of the hypoxic response, hypoxia-inducible factor-alpha (HIF-alpha), thereby targeting HIF-alpha for degradation. In this report we show that the heat shock protein 90 (HSP90) co-chaperones p23 and FKBP38 interact via a conserved Pro-Xaa-Leu-Glu motif (where Xaa = any amino acid) in these proteins with the N-terminal Myeloid Nervy and DEAF-1 (MYND)-type zinc finger of PHD2. Knockdown of p23 augments hypoxia-induced HIF-1alpha protein levels and HIF target genes. We propose that p23 recruits PHD2 to the HSP90 machinery to facilitate HIF-1alpha hydroxylation. These findings identify a link between two ancient pathways, the PHD:HIF and the HSP90 pathways, and suggest that this link was established concurrent with the emergence of the PHD:HIF pathway in evolution.
Davids,2013 (23410971) Davids MS, Letai A "ABT-199: taking dead aim at BCL-2." Cancer Cell 2013 Feb 15
ABT-199 is a new selective small molecule inhibitor of BCL-2 that appears to spare platelets while achieving potent antitumor activity. Assays that can predict the efficacy of ABT-199 in individual tumors will be critical in determining how best to incorporate this promising agent into the armamentarium of cancer therapies.
Goult,2013 (23389036) Goult BT, Zacharchenko T, Bate N, Tsang R, Hey F, Gingras AR, Elliott PR, Roberts GC, Ballestrem C, Critchley DR, Barsukov IL "RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover." J Biol Chem 2013 Mar 25
Talin activates integrins, couples them to F-actin, and recruits vinculin to focal adhesions (FAs). Here, we report the structural characterization of the talin rod: 13 helical bundles (R1-R13) organized into a compact cluster of four-helix bundles (R2-R4) within a linear chain of five-helix bundles. Nine of the bundles contain vinculin-binding sites (VBS); R2R3 are atypical, with each containing two VBS. Talin R2R3 also binds synergistically to RIAM, a Rap1 effector involved in integrin activation. Biochemical and structural data show that vinculin and RIAM binding to R2R3 is mutually exclusive. Moreover, vinculin binding requires domain unfolding, whereas RIAM binds the folded R2R3 double domain. In cells, RIAM is enriched in nascent adhesions at the leading edge whereas vinculin is enriched in FAs. We propose a model in which RIAM binding to R2R3 initially recruits talin to membranes where it activates integrins. As talin engages F-actin, force exerted on R2R3 disrupts RIAM binding and exposes the VBS, which recruit vinculin to stabilize the complex.
Ohta,2013 (23387299) Ohta A, Schumacher FR, Mehellou Y, Johnson C, Knebel A, Macartney TJ, Wood NT, Alessi DR, Kurz T "The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction." Biochem J 2013 Mar 15
The WNK (with no lysine kinase)-SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) signalling pathway plays an important role in controlling mammalian blood pressure by modulating the activity of ion co-transporters in the kidney. Recent studies have identified Gordon's hypertension syndrome patients with mutations in either CUL3 (Cullin-3) or the BTB protein KLHL3 (Kelch-like 3). CUL3 assembles with BTB proteins to form Cullin-RING E3 ubiquitin ligase complexes. To explore how a CUL3-KLHL3 complex might operate, we immunoprecipitated KLHL3 and found that it associated strongly with WNK isoforms and CUL3, but not with other components of the pathway [SPAK/OSR1 or NCC (Na(+)/Cl(-) co-transporter)/NKCC1 (Na(+)/K(+)/2Cl(-) co-transporter 1)]. Strikingly, 13 out of the 15 dominant KLHL3 disease mutations analysed inhibited binding to WNK1 or CUL3. The recombinant wild-type CUL3-KLHL3 E3 ligase complex, but not a disease-causing CUL3-KLHL3[R528H] mutant complex, ubiquitylated WNK1 in vitro. Moreover, siRNA (small interfering RNA)-mediated knockdown of CUL3 increased WNK1 protein levels and kinase activity in HeLa cells. We mapped the KLHL3 interaction site in WNK1 to a non-catalytic region (residues 479-667). Interestingly, the equivalent region in WNK4 encompasses residues that are mutated in Gordon's syndrome patients. Strikingly, we found that the Gordon's disease-causing WNK4[E562K] and WNK4[Q565E] mutations, as well as the equivalent mutation in the WNK1[479-667] fragment, abolished the ability to interact with KLHL3. These results suggest that the CUL3-KLHL3 E3 ligase complex regulates blood pressure via its ability to interact with and ubiquitylate WNK isoforms. The findings of the present study also emphasize that the missense mutations in WNK4 that cause Gordon's syndrome strongly inhibit interaction with KLHL3. This could elevate blood pressure by increasing the expression of WNK4 thereby stimulating inappropriate salt retention in the kidney by promoting activation of the NCC/NKCC2 ion co-transporters. The present study reveals how mutations that disrupt the ability of an E3 ligase to interact with and ubiquitylate a critical cellular substrate such as WNK isoforms can trigger a chronic disease such as hypertension.
Boddey,2013 (23387285) Boddey JA, Carvalho TG, Hodder AN, Sargeant TJ, Sleebs BE, Marapana D, Lopaticki S, Nebl T, Cowman AF "Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome." Traffic 2013 May
Plasmodium falciparum exports several hundred effector proteins that remodel the host erythrocyte and enable parasites to acquire nutrients, sequester in the circulation and evade immune responses. The majority of exported proteins contain the Plasmodium export element (PEXEL; RxLxE/Q/D) in their N-terminus, which is proteolytically cleaved in the parasite endoplasmic reticulum by Plasmepsin V, and is necessary for export. Several exported proteins lack a PEXEL or contain noncanonical motifs. Here, we assessed whether Plasmepsin V could process the N-termini of diverse protein families in P. falciparum. We show that Plasmepsin V cleaves N-terminal sequences from RIFIN, STEVOR and RESA multigene families, the latter of which contain a relaxed PEXEL (RxLxxE). However, Plasmepsin V does not cleave the N-terminal sequence of the major exported virulence factor erythrocyte membrane protein 1 (PfEMP1) or the PEXEL-negative exported proteins SBP-1 or REX-2. We probed the substrate specificity of Plasmepsin V and determined that lysine at the PEXEL P3 position, which is present in PfEMP1 and other putatively exported proteins, blocks Plasmepsin V activity. Furthermore, isoleucine at position P1 also blocked Plasmepsin V activity. The specificity of Plasmepsin V is therefore exquisitely confined and we have used this novel information to redefine the predicted P. falciparum PEXEL exportome.
Repetto,2013 (23383002) Repetto D, Aramu S, Boeri Erba E, Sharma N, Grasso S, Russo I, Jensen ON, Cabodi S, Turco E, Di Stefano P, Defilippi P "Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase." PLoS One 2013 Feb 05
Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.
Hast,2013 (23382044) Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F, Hayes DN, Major MB "Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination." Cancer Res 2013 Apr 04
Somatic mutations in the KEAP1 ubiquitin ligase or its substrate NRF2 (NFE2L2) commonly occur in human cancer, resulting in constitutive NRF2-mediated transcription of cytoprotective genes. However, many tumors display high NRF2 activity in the absence of mutation, supporting the hypothesis that alternative mechanisms of pathway activation exist. Previously, we and others discovered that via a competitive binding mechanism, the proteins WTX (AMER1), PALB2, and SQSTM1 bind KEAP1 to activate NRF2. Proteomic analysis of the KEAP1 protein interaction network revealed a significant enrichment of associated proteins containing an ETGE amino acid motif, which matches the KEAP1 interaction motif found in NRF2. Like WTX, PALB2, and SQSTM1, we found that the dipeptidyl peptidase 3 (DPP3) protein binds KEAP1 via an "ETGE" motif to displace NRF2, thus inhibiting NRF2 ubiquitination and driving NRF2-dependent transcription. Comparing the spectrum of KEAP1-interacting proteins with the genomic profile of 178 squamous cell lung carcinomas characterized by The Cancer Genome Atlas revealed amplification and mRNA overexpression of the DPP3 gene in tumors with high NRF2 activity but lacking NRF2 stabilizing mutations. We further show that tumor-derived mutations in KEAP1 are hypomorphic with respect to NRF2 inhibition and that DPP3 overexpression in the presence of these mutants further promotes NRF2 activation. Collectively, our findings further support the competition model of NRF2 activation and suggest that "ETGE"-containing proteins such as DPP3 contribute to NRF2 activity in cancer.
Helle,2013 (23380708) Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B "Organization and function of membrane contact sites." Biochim Biophys Acta 2013 Nov
Membrane-bound organelles are a wonderful evolutionary acquisition of the eukaryotic cell, allowing the segregation of sometimes incompatible biochemical reactions into specific compartments with tailored microenvironments. On the flip side, these isolating membranes that crowd the interior of the cell, constitute a hindrance to the diffusion of metabolites and information to all corners of the cell. To ensure coordination of cellular activities, cells use a network of contact sites between the membranes of different organelles. These membrane contact sites (MCSs) are domains where two membranes come to close proximity, typically less than 30nm. Such contacts create microdomains that favor exchange between two organelles. MCSs are established and maintained in durable or transient states by tethering structures, which keep the two membranes in proximity, but fusion between the membranes does not take place. Since the endoplasmic reticulum (ER) is the most extensive cellular membrane network, it is thus not surprising to find the ER involved in most MCSs within the cell. The ER contacts diverse compartments such as mitochondria, lysosomes, lipid droplets, the Golgi apparatus, endosomes and the plasma membrane. In this review, we will focus on the common organizing principles underlying the many MCSs found between the ER and virtually all compartments of the cell, and on how the ER establishes a network of MCSs for the trafficking of vital metabolites and information. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Kateb,2013 (23372760) Kateb F, Perrin H, Tripsianes K, Zou P, Spadaccini R, Bottomley M, Franzmann TM, Buchner J, Ansieau S, Sattler M "Structural and functional analysis of the DEAF-1 and BS69 MYND domains." PLoS One 2013 Feb 01
DEAF-1 is an important transcriptional regulator that is required for embryonic development and is linked to clinical depression and suicidal behavior in humans. It comprises various structural domains, including a SAND domain that mediates DNA binding and a MYND domain, a cysteine-rich module organized in a Cys(4)-Cys(2)-His-Cys (C4-C2HC) tandem zinc binding motif. DEAF-1 transcription regulation activity is mediated through interactions with cofactors such as NCoR and SMRT. Despite the important biological role of the DEAF-1 protein, little is known regarding the structure and binding properties of its MYND domain.Here, we report the solution structure, dynamics and ligand binding of the human DEAF-1 MYND domain encompassing residues 501-544 determined by NMR spectroscopy. The structure adopts a betabetaalpha fold that exhibits tandem zinc-binding sites with a cross-brace topology, similar to the MYND domains in AML1/ETO and other proteins. We show that the DEAF-1 MYND domain binds to peptides derived from SMRT and NCoR corepressors. The binding surface mapped by NMR titrations is similar to the one previously reported for AML1/ETO. The ligand binding and molecular functions of the related BS69 MYND domain were studied based on a homology model and mutational analysis. Interestingly, the interaction between BS69 and its binding partners (viral and cellular proteins) seems to require distinct charged residues flanking the predicted MYND domain fold, suggesting a different binding mode. Our findings demonstrate that the MYND domain is a conserved zinc binding fold that plays important roles in transcriptional regulation by mediating distinct molecular interactions with viral and cellular proteins.
Canning,2013 (23349464) Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Ayinampudi V, Marsden BD, Gileadi O, Knapp S, von Delft F, Bullock AN "Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases." J Biol Chem 2013 Mar 18
Cullin-RING ligases are multisubunit E3 ubiquitin ligases that recruit substrate-specific adaptors to catalyze protein ubiquitylation. Cul3-based Cullin-RING ligases are uniquely associated with BTB adaptors that incorporate homodimerization, Cul3 assembly, and substrate recognition into a single multidomain protein, of which the best known are BTB-BACK-Kelch domain proteins, including KEAP1. Cul3 assembly requires a BTB protein "3-box" motif, analogous to the F-box and SOCS box motifs of other Cullin-based E3s. To define the molecular basis for this assembly and the overall architecture of the E3, we determined the crystal structures of the BTB-BACK domains of KLHL11 both alone and in complex with Cul3, along with the Kelch domain structures of KLHL2 (Mayven), KLHL7, KLHL12, and KBTBD5. We show that Cul3 interaction is dependent on a unique N-terminal extension sequence that packs against the 3-box in a hydrophobic groove centrally located between the BTB and BACK domains. Deletion of this N-terminal region results in a 30-fold loss in affinity. The presented data offer a model for the quaternary assembly of this E3 class that supports the bivalent capture of Nrf2 and reveals potential new sites for E3 inhibitor design.
Kruse,2013 (23345399) Kruse T, Zhang G, Larsen MS, Lischetti T, Streicher W, Kragh Nielsen T, Bjorn SP, Nilsson J "Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression." J Cell Sci 2013 Apr 26
BubR1 is a central component of the spindle assembly checkpoint that inhibits progression into anaphase in response to improper kinetochore-microtubule interactions. In addition, BubR1 also helps stabilize kinetochore-microtubule interactions by counteracting the Aurora B kinase but the mechanism behind this is not clear. Here we show that BubR1 directly binds to the B56 family of protein phosphatase 2A (PP2A) regulatory subunits through a conserved motif that is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and polo-like kinase 1 (Plk1). Two highly conserved hydrophobic residues surrounding the serine 670 Cdk1 phosphorylation site are required for B56 binding. Mutation of these residues prevents the establishment of a proper metaphase plate and delays cells in mitosis. Furthermore, we show that phosphorylation of serines 670 and 676 stimulates the binding of B56 to BubR1 and that BubR1 targets a pool of B56 to kinetochores. Our data suggest that BubR1 counteracts Aurora B kinase activity at improperly attached kinetochores by recruiting B56-PP2A phosphatase complexes.
McDonald,2013 (23334917) McDonald CB, El Hokayem J, Zafar N, Balke JE, Bhat V, Mikles DC, Deegan BJ, Seldeen KL, Farooq A "Allostery mediates ligand binding to Grb2 adaptor in a mutually exclusive manner." J Mol Recognit 2013 Jan 21
Allostery plays a key role in dictating the stoichiometry and thermodynamics of multi-protein complexes driving a plethora of cellular processes central to health and disease. Herein, using various biophysical tools, we demonstrate that although Sos1 nucleotide exchange factor and Gab1 docking protein recognize two non-overlapping sites within the Grb2 adaptor, allostery promotes the formation of two distinct pools of Grb2-Sos1 and Grb2-Gab1 binary signaling complexes in concert in lieu of a composite Sos1-Grb2-Gab1 ternary complex. Of particular interest is the observation that the binding of Sos1 to the nSH3 domain within Grb2 sterically blocks the binding of Gab1 to the cSH3 domain and vice versa in a mutually exclusive manner. Importantly, the formation of both the Grb2-Sos1 and Grb2-Gab1 binary complexes is governed by a stoichiometry of 2:1, whereby the respective SH3 domains within Grb2 homodimer bind to Sos1 and Gab1 via multivalent interactions. Collectively, our study sheds new light on the role of allostery in mediating cellular signaling machinery.
Khan,2013 (23318954) Khan H, Cino EA, Brickenden A, Fan J, Yang D, Choy WY "Fuzzy complex formation between the intrinsically disordered prothymosin alpha and the Kelch domain of Keap1 involved in the oxidative stress response." J Mol Biol 2013 Mar 04
Kelch-like ECH-associated protein 1 (Keap1) is an inhibitor of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor for cytoprotective gene activation in the oxidative stress response. Under unstressed conditions, Keap1 interacts with Nrf2 in the cytoplasm via its Kelch domain and suppresses the transcriptional activity of Nrf2. During oxidative stress, Nrf2 is released from Keap1 and is translocated into the nucleus, where it interacts with the small Maf protein to initiate gene transcription. Prothymosin alpha (ProTalpha), an intrinsically disordered protein, also interacts with the Kelch domain of Keap1 and mediates the import of Keap1 into the nucleus to inhibit Nrf2 activity. To gain a molecular basis understanding of the oxidative stress response mechanism, we have characterized the interaction between ProTalpha and the Kelch domain of Keap1 by using nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, peptide array analysis, site-directed mutagenesis, and molecular dynamic simulations. The results of nuclear magnetic resonance chemical shift mapping, amide hydrogen exchange, and spin relaxation measurements revealed that ProTalpha retains a high level of flexibility, even in the bound state with Kelch. This finding is in agreement with the observations from the molecular dynamic simulations of the ProTalpha-Kelch complex. Mutational analysis of ProTalpha, guided by peptide array data and isothermal titration calorimetry, further pinpointed that the region (38)NANEENGE(45) of ProTalpha is crucial for the interaction with the Kelch domain, while the flanking residues play relatively minor roles in the affinity of binding.
Sedgwick,2013 (23288039) Sedgwick GG, Hayward DG, Di Fiore B, Pardo M, Yu L, Pines J, Nilsson J "Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C-Cdc20 complex." EMBO J 2013 Jan 23
The Anaphase Promoting Complex/Cyclosome (APC/C) in complex with its co-activator Cdc20 is responsible for targeting proteins for ubiquitin-mediated degradation during mitosis. The activity of APC/C-Cdc20 is inhibited during prometaphase by the Spindle Assembly Checkpoint (SAC) yet certain substrates escape this inhibition. Nek2A degradation during prometaphase depends on direct binding of Nek2A to the APC/C via a C-terminal MR dipeptide but whether this motif alone is sufficient is not clear. Here, we identify Kif18A as a novel APC/C-Cdc20 substrate and show that Kif18A degradation depends on a C-terminal LR motif. However in contrast to Nek2A, Kif18A is not degraded until anaphase showing that additional mechanisms contribute to Nek2A degradation. We find that dimerization via the leucine zipper, in combination with the MR motif, is required for stable Nek2A binding to and ubiquitination by the APC/C. Nek2A and the mitotic checkpoint complex (MCC) have an overlap in APC/C subunit requirements for binding and we propose that Nek2A binds with high affinity to apo-APC/C and is degraded by the pool of Cdc20 that avoids inhibition by the SAC.
Saito-Diaz,2013 (23256519) Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E "The way Wnt works: components and mechanism." Growth Factors 2013 Feb 08
The canonical Wnt/beta-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, beta-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Liu,2013 (23220741) Liu D, Ryu KS, Ko J, Sun D, Lim K, Lee JO, Hwang Jm, Lee ZW, Choi BS "Insights into the regulation of human Rev1 for translesion synthesis polymerases revealed by the structural studies on its polymerase-interacting domain." J Mol Cell Biol 2013 Jun
None
Zhu,2013 (23209295) Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A, Brady NR "Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis." J Biol Chem 2013 Jan 14
BH3-only proteins integrate apoptosis and autophagy pathways, yet regulation and functional consequences of pathway cross-talk are not fully resolved. The BH3-only protein Bnip3 is an autophagy receptor that signals autophagic degradation of mitochondria (mitophagy) via interaction of its LC3-interacting region (LIR) with Atg8 proteins. Here we report that phosphorylation of serine residues 17 and 24 flanking the Bnip3 LIR promotes binding to specific Atg8 members LC3B and GATE-16. Using quantitative multispectral image-based flow cytometry, we demonstrate that enhancing Bnip3-Atg8 interactions via phosphorylation-mimicked LIR mutations increased mitochondrial sequestration, lysosomal delivery, and degradation. Importantly, mitochondria were targeted by mitophagy prior to cytochrome c release, resulting in reduced cellular cytochrome c release capacity. Intriguingly, pro-survival Bcl-x(L) positively regulated Bnip3 binding to LC3B, sequestration, and mitochondrial autophagy, further supporting an anti-apoptotic role for Bnip3-induced mitophagy. The ensemble of these results demonstrates that the phosphorylation state of the Bnip3 LIR signals either the induction of apoptosis or pro-survival mitophagy.
Monda,2013 (23201271) Monda JK, Scott DC, Miller DJ, Lydeard J, King D, Harper JW, Bennett EJ, Schulman BA "Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes." Structure 2013 Jan 14
Little is known about molecular recognition of acetylated N termini, despite prevalence of this modification among eukaryotic cytosolic proteins. We report that the family of human DCN-like (DCNL) co-E3s, which promote ligation of the ubiquitin-like protein NEDD8 to cullin targets, recognizes acetylated N termini of the E2 enzymes UBC12 and UBE2F. Systematic biochemical and biophysical analyses reveal 40- and 10-fold variations in affinities among different DCNL-cullin and DCNL-E2 complexes, contributing to varying efficiencies of different NEDD8 ligation cascades. Structures of DCNL2 and DCNL3 complexes with N-terminally acetylated peptides from UBC12 and UBE2F illuminate a common mechanism by which DCNL proteins recognize N-terminally acetylated E2s and how selectivity for interactions dependent on N-acetyl-methionine are established through side chains recognizing distal residues. Distinct preferences of UBC12 and UBE2F peptides for inhibiting different DCNLs, including the oncogenic DCNL1 protein, suggest it may be possible to develop small molecules blocking specific N-acetyl-methionine-dependent protein interactions.
Aouacheria,2013 (23199982) Aouacheria A, Rech de Laval V, Combet C, Hardwick JM "Evolution of Bcl-2 homology motifs: homology versus homoplasy." Trends Cell Biol 2013 Feb 26
Bcl-2 family proteins regulate apoptosis in animals. This protein family includes several homologous proteins and a collection of other proteins lacking sequence similarity except for a Bcl-2 homology (BH)3 motif. Thus, membership in the Bcl-2 family requires only one of the four BH motifs. On this basis, a growing number of diverse BH3-only proteins are being reported. Although compelling cell biological and biophysical evidence validates many BH3-only proteins, claims of significant BH3 sequence similarity are often unfounded. Computational and phylogenetic analyses suggest that only some BH3 motifs arose by divergent evolution from a common ancestor (homology), whereas others arose by convergent evolution or random coincidence (homoplasy), challenging current assumptions about which proteins constitute the extended Bcl-2 family.
Xu,2013 (23178170) Xu Q, Chang A, Tolia A, Minor DL Jr "Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation." J Mol Biol 2013 Jan 08
Calmodulin (CaM) is an important regulator of Kv7.x (KCNQx) voltage-gated potassium channels. Channels from this family produce neuronal M currents and cardiac and auditory I(KS) currents and harbor mutations that cause arrhythmias, epilepsy, and deafness. Despite extensive functional characterization, biochemical and structural details of the interaction between CaM and the channel have remained elusive. Here, we show that both apo-CaM and Ca(2+)/CaM bind to the C-terminal tail of the neuronal channel Kv7.4 (KCNQ4), which is involved in both hearing and mechanosensation. Interactions between apo-CaM and the Kv7.4 tail involve two C-terminal tail segments, known as the A and B segments, whereas the interaction between Ca(2+)/CaM and the Kv7.4 C-terminal tail requires only the B segment. Biochemical studies show that the calcium dependence of the CaM:B segment interaction is conserved in all Kv7 subtypes. X-ray crystallographic determination of the structure of the Ca(2+)/CaM:Kv7.4 B segment complex shows that Ca(2+)/CaM wraps around the Kv7.4 B segment, which forms an alpha-helix, in an antiparallel orientation that embodies a variation of the classic 1-14 Ca(2+)/CaM interaction motif. Taken together with the context of prior studies, our data suggest a model for modulation of neuronal Kv7 channels involving a calcium-dependent conformational switch from an apo-CaM form that bridges the A and B segments to a Ca(2+)/CaM form bound to the B-helix. The structure presented here also provides a context for a number of disease-causing mutations and for further dissection of the mechanisms by which CaM controls Kv7 function.
Zhang,2012 (23175388) Zhang P, Bergamin E, Couture JF "The many facets of MLL1 regulation." Biopolymers 2012 Nov 23
In the last 20 years, we have witnessed an exponential number of evidences linking the human mixed lineage leukemia-1 (MLL1) gene to several acute and myelogenous leukemias. MLL1 is one of the founding members of the SET1 family of lysine methyltransferases and is key for the proper control of developmentally regulated gene expression. MLL1 is a structurally complex protein composed of several functional domains. These domains play pivotal roles for the recruitment of regulatory proteins. These MLL1 regulatory proteins (MRPs) dynamically interact with MLL1 and consequently control gene expression. In this review, we summarize recent structural and functional studies of MRPs and discuss emergent structural paradigms for the control of MLL1 activity. (c) 2012 Wiley Periodicals, Inc. Biopolymers 99: 136-145, 2013.
Hickey,2012 (23175280) Hickey CM, Wilson NR, Hochstrasser M "Function and regulation of SUMO proteases." Nat Rev Mol Cell Biol 2012 Nov 23
Covalent attachment of small ubiquitin-like modifier (SUMO) to proteins is highly dynamic, and both SUMO-protein conjugation and cleavage can be regulated. Protein desumoylation is carried out by SUMO proteases, which control cellular mechanisms ranging from transcription and cell division to ribosome biogenesis. Recent advances include the discovery of two novel classes of SUMO proteases, insights regarding SUMO protease specificity, and revelations of previously unappreciated SUMO protease functions in several key cellular pathways. These developments, together with new connections between SUMO proteases and the recently discovered SUMO-targeted ubiquitin ligases (STUbLs), make this an exciting period to study these enzymes.
Stamos,2013 (23169527) Stamos JL, Weis WI "The beta-catenin destruction complex." Cold Spring Harb Perspect Biol 2013 Jan 03
The Wnt/beta-catenin pathway is highly regulated to insure the correct temporal and spatial activation of its target genes. In the absence of a Wnt stimulus, the transcriptional coactivator beta-catenin is degraded by a multiprotein "destruction complex" that includes the tumor suppressors Axin and adenomatous polyposis coli (APC), the Ser/Thr kinases GSK-3 and CK1, protein phosphatase 2A (PP2A), and the E3-ubiquitin ligase beta-TrCP. The complex generates a beta-TrCP recognition site by phosphorylation of a conserved Ser/Thr-rich sequence near the beta-catenin amino terminus, a process that requires scaffolding of the kinases and beta-catenin by Axin. Ubiquitinated beta-catenin is degraded by the proteasome. The molecular mechanisms that underlie several aspects of destruction complex function are poorly understood, particularly the role of APC. Here we review the molecular mechanisms of destruction complex function and discuss several potential roles of APC in beta-catenin destruction.
Xie,2012 (23143872) Xie W, Yang X, Xu M, Jiang T "Structural insights into the assembly of human translesion polymerase complexes." Protein Cell 2012 Nov
In addition to DNA repair pathways, cells utilize translesion DNA synthesis (TLS) to bypass DNA lesions during replication. During TLS, Y-family DNA polymerase (Poleta, Polkappa, Poli and Rev1) inserts specific nucleotide opposite preferred DNA lesions, and then Polzeta consisting of two subunits, Rev3 and Rev7, carries out primer extension. Here, we report the complex structures of Rev3-Rev7-Rev1(CTD) and Rev3-Rev7-Rev1(CTD)-Polkappa(RIR). These two structures demonstrate that Rev1(CTD) contains separate binding sites for Polkappa and Rev7. Our BIAcore experiments provide additional support for the notion that the interaction between Rev3 and Rev7 increases the affinity of Rev7 and Rev1. We also verified through FRET experiment that Rev1, Rev3, Rev7 and Polkappa form a stable quaternary complex in vivo, thereby suggesting an efficient switching mechanism where the "inserter" polymerase can be immediately replaced by an "extender" polymerase within the same quaternary complex.
Laughlin,2012 (23142346) Laughlin JD, Nwachukwu JC, Figuera-Losada M, Cherry L, Nettles KW, LoGrasso PV "Structural mechanisms of allostery and autoinhibition in JNK family kinases." Structure 2012 Dec 11
c-Jun N-terminal (JNK) family kinases have a common peptide-docking site used by upstream activating kinases, substrates, scaffold proteins, and phosphatases, where the ensemble of bound proteins determines signaling output. Although there are many JNK structures, little is known about mechanisms of allosteric regulation between the catalytic and peptide-binding sites, and the activation loop, whose phosphorylation is required for catalytic activity. Here, we compare three structures of unliganded JNK3 bound to different peptides. These were compared as a class to structures that differ in binding of peptide, small molecule ligand, or conformation of the kinase activation loop. Peptide binding induced an inhibitory interlobe conformer that was reversed by alterations in the activation loop. Structure class analysis revealed the subtle structural mechanisms for allosteric signaling between the peptide-binding site and activation loop. Biochemical data from isothermal calorimetry, fluorescence energy transfer, and enzyme inhibition demonstrated affinity differences among the three peptides that were consistent with structural observations.
Breuer,2012 (23140174) Breuer D, Kotelkin A, Ammosova T, Kumari N, Ivanov A, Ilatovskiy AV, Beullens M, Roane PR, Bollen M, Petukhov MG, Kashanchi F, Nekhai S "CDK2 regulates HIV-1 transcription by phosphorylation of CDK9 on serine 90." Retrovirology 2012 Dec 11
BACKGROUND: HIV-1 transcription is activated by the viral Tat protein that recruits host positive transcription elongation factor-b (P-TEFb) containing CDK9/cyclin T1 to the HIV-1 promoter. P-TEFb in the cells exists as a lower molecular weight CDK9/cyclin T1 dimer and a high molecular weight complex of 7SK RNA, CDK9/cyclin T1, HEXIM1 dimer and several additional proteins. Our previous studies implicated CDK2 in HIV-1 transcription regulation. We also found that inhibition of CDK2 by iron chelators leads to the inhibition of CDK9 activity, suggesting a functional link between CDK2 and CDK9. Here, we investigate whether CDK2 phosphorylates CDK9 and regulates its activity. RESULTS: The siRNA-mediated knockdown of CDK2 inhibited CDK9 kinase activity and reduced CDK9 phosphorylation. Stable shRNA-mediated CDK2 knockdown inhibited HIV-1 transcription, but also increased the overall level of 7SK RNA. CDK9 contains a motif (90SPYNR94) that is consensus CDK2 phosphorylation site. CDK9 was phosphorylated on Ser90 by CDK2 in vitro. In cultured cells, CDK9 phosphorylation was reduced when Ser90 was mutated to an Ala. Phosphorylation of CDK9 on Ser90 was also detected with phospho-specific antibodies and it was reduced after the knockdown of CDK2. CDK9 expression decreased in the large complex for the CDK9-S90A mutant and was correlated with a reduced activity and an inhibition of HIV-1 transcription. In contrast, the CDK9-S90D mutant showed a slight decrease in CDK9 expression in both the large and small complexes but induced Tat-dependent HIV-1 transcription. Molecular modeling showed that Ser 90 of CDK9 is located on a flexible loop exposed to solvent, suggesting its availability for phosphorylation. CONCLUSION: Our data indicate that CDK2 phosphorylates CDK9 on Ser 90 and thereby contributes to HIV-1 transcription. The phosphorylation of Ser90 by CDK2 represents a novel mechanism of HIV-1 regulated transcription and provides a new strategy for activation of latent HIV-1 provirus.
Kaneko,2012 (23134684) Kaneko T, Joshi R, Feller SM, Li SS "Phosphotyrosine recognition domains: the typical, the atypical and the versatile." Cell Commun Signal 2012 Nov 7
SH2 domains are long known prominent players in the field of phosphotyrosine recognition within signaling protein networks. However, over the years they have been joined by an increasing number of other protein domain families that can, at least with some of their members, also recognise pTyr residues in a sequence-specific context. This superfamily of pTyr recognition modules, which includes substantial fractions of the PTB domains, as well as much smaller, or even single member fractions like the HYB domain, the PKCdelta and PKCtheta C2 domains and RKIP, represents a fascinating, medically relevant and hence intensely studied part of the cellular signaling architecture of metazoans. Protein tyrosine phosphorylation clearly serves a plethora of functions and pTyr recognition domains are used in a similarly wide range of interaction modes, which encompass, for example, partner protein switching, tandem recognition functionalities and the interaction with catalytically active protein domains. If looked upon closely enough, virtually no pTyr recognition and regulation event is an exact mirror image of another one in the same cell. Thus, the more we learn about the biology and ultrastructural details of pTyr recognition domains, the more does it become apparent that nature cleverly combines and varies a few basic principles to generate a sheer endless number of sophisticated and highly effective recognition/regulation events that are, under normal conditions, elegantly orchestrated in time and space. This knowledge is also valuable when exploring pTyr reader domains as diagnostic tools, drug targets or therapeutic reagents to combat human diseases.
Fry,2012 (23132929) Fry AM, O'Regan L, Sabir SR, Bayliss R "Cell cycle regulation by the NEK family of protein kinases." J Cell Sci 2012 Nov 20
Genetic screens for cell division cycle mutants in the filamentous fungus Aspergillus nidulans led to the discovery of never-in-mitosis A (NIMA), a serine/threonine kinase that is required for mitotic entry. Since that discovery, NIMA-related kinases, or NEKs, have been identified in most eukaryotes, including humans where eleven genetically distinct proteins named NEK1 to NEK11 are expressed. Although there is no evidence that human NEKs are essential for mitotic entry, it is clear that several NEK family members have important roles in cell cycle control. In particular, NEK2, NEK6, NEK7 and NEK9 contribute to the establishment of the microtubule-based mitotic spindle, whereas NEK1, NEK10 and NEK11 have been implicated in the DNA damage response. Roles for NEKs in other aspects of mitotic progression, such as chromatin condensation, nuclear envelope breakdown, spindle assembly checkpoint signalling and cytokinesis have also been proposed. Interestingly, NEK1 and NEK8 also function within cilia, the microtubule-based structures that are nucleated from basal bodies. This has led to the current hypothesis that NEKs have evolved to coordinate microtubule-dependent processes in both dividing and non-dividing cells. Here, we review the functions of the human NEKs, with particular emphasis on those family members that are involved in cell cycle control, and consider their potential as therapeutic targets in cancer.
Lau,2012 (23109716) Lau SY, Procko E, Gaudet R "Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel." J Gen Physiol 2012 Oct 30
Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TRPV1: the N-terminal ankyrin repeat domain (ARD) and a short distal C-terminal (CT) segment. Here, we present the crystal structure of calcium-bound CaM (Ca(2+)-CaM) in complex with the TRPV1-CT segment, determined to 1.95-A resolution. The two lobes of Ca(2+)-CaM wrap around a helical TRPV1-CT segment in an antiparallel orientation, and two hydrophobic anchors, W787 and L796, contact the C-lobe and N-lobe of Ca(2+)-CaM, respectively. This structure is similar to canonical Ca(2+)-CaM-peptide complexes, although TRPV1 contains no classical CaM recognition sequence motif. Using structural and mutational studies, we established the TRPV1 C terminus as a high affinity Ca(2+)-CaM-binding site in both the isolated TRPV1 C terminus and in full-length TRPV1. Although a ternary complex of CaM, TRPV1-ARD, and TRPV1-CT had previously been postulated, we found no biochemical evidence of such a complex. In electrophysiology studies, mutation of the Ca(2+)-CaM-binding site on TRPV1-ARD abolished desensitization in response to repeated application of capsaicin, whereas mutation of the Ca(2+)-CaM-binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved in separate regulatory mechanisms.
Tian,2012 (23091007) Tian W, Li B, Warrington R, Tomchick DR, Yu H, Luo X "Structural analysis of human Cdc20 supports multisite degron recognition by APC/C." Proc Natl Acad Sci U S A 2012 Nov 07
The anaphase-promoting complex/cyclosome (APC/C) promotes anaphase onset and mitotic exit through ubiquitinating securin and cyclin B1. The mitotic APC/C activator, the cell division cycle 20 (Cdc20) protein, directly interacts with APC/C degrons--the destruction (D) and KEN boxes. APC/C(Cdc20) is the target of the spindle checkpoint. Checkpoint inhibition of APC/C(Cdc20) requires the binding of a BubR1 KEN box to Cdc20. How APC/C recognizes substrates is not understood. We report the crystal structures of human Cdc20 alone or bound to a BubR1 KEN box. Cdc20 has a disordered N-terminal region and a C-terminal WD40 beta propeller with a preformed KEN-box-binding site at its top face. We identify a second conserved surface at the side of the Cdc20 beta propeller as a D-box-binding site. The D box of securin, but not its KEN box, is critical for securin ubiquitination by APC/C(Cdc20). Although both motifs contribute to securin ubiquitination by APC/C(Cdh1), securin mutants lacking either motif are efficiently ubiquitinated. Furthermore, D-box peptides diminish the ubiquitination of KEN-box substrates by APC/C(Cdh1), suggesting possible competition between the two motifs. Our results indicate the lack of strong positive cooperativity between the two degrons of securin. We propose that low-cooperativity, multisite target recognition enables APC/C to robustly ubiquitinate diverse substrates and helps to drive cell cycle oscillations.
Panas,2012 (23087212) Panas MD, Varjak M, Lulla A, Eng KE, Merits A, Karlsson Hedestam GB, McInerney GM "Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest virus infection." Mol Biol Cell 2012 Dec 14
Dynamic, mRNA-containing stress granules (SGs) form in the cytoplasm of cells under environmental stresses, including viral infection. Many viruses appear to employ mechanisms to disrupt the formation of SGs on their mRNAs, suggesting that they represent a cellular defense against infection. Here, we report that early in Semliki Forest virus infection, the C-terminal domain of the viral nonstructural protein 3 (nsP3) forms a complex with Ras-GAP SH3-domain-binding protein (G3BP) and sequesters it into viral RNA replication complexes in a manner that inhibits the formation of SGs on viral mRNAs. A viral mutant carrying a C-terminal truncation of nsP3 induces more persistent SGs and is attenuated for propagation in cell culture. Of importance, we also show that the efficient translation of viral mRNAs containing a translation enhancer sequence also contributes to the disassembly of SGs in infected cells. Furthermore, we show that the nsP3/G3BP interaction also blocks SGs induced by other stresses than virus infection. This is one of few described viral mechanisms for SG disruption and underlines the role of SGs in antiviral defense.
Ge,2012 (23086940) Ge Q, Huang N, Wynn RM, Li Y, Du X, Miller B, Zhang H, Uyeda K "Structural characterization of a unique interface between carbohydrate response element-binding protein (ChREBP) and 14-3-3beta protein." J Biol Chem 2012 Dec 11
Carbohydrate response element-binding protein (ChREBP) is an insulin-independent, glucose-responsive transcription factor that is expressed at high levels in liver hepatocytes where it plays a critical role in converting excess carbohydrates to fat for storage. In response to fluctuating glucose levels, hepatic ChREBP activity is regulated in large part by nucleocytoplasmic shuttling of ChREBP protein via interactions with 14-3-3 proteins. The N-terminal ChREBP regulatory region is necessary and sufficient for glucose-responsive ChREBP nuclear import and export. Here, we report the crystal structure of a complex of 14-3-3beta bound to the N-terminal regulatory region of ChREBP at 2.4 A resolution. The crystal structure revealed that the alpha2 helix of ChREBP (residues 117-137) adopts a well defined alpha-helical conformation and binds 14-3-3 in a phosphorylation-independent manner that is different from all previously characterized 14-3-3 and target protein-binding modes. ChREBP alpha2 interacts with 14-3-3 through both electrostatic and van der Waals interactions, and the binding is partially mediated by a free sulfate or phosphate. Structure-based mutagenesis and binding assays indicated that disrupting the observed 14-3-3 and ChREBP alpha2 interface resulted in a loss of complex formation, thus validating the novel protein interaction mode in the 14-3-3beta.ChREBP alpha2 complex.
Tidow,2012 (23086147) Tidow H, Poulsen LR, Andreeva A, Knudsen M, Hein KL, Wiuf C, Palmgren MG, Nissen P "A bimodular mechanism of calcium control in eukaryotes." Nature 2012 Nov 15
Calcium ions (Ca(2+)) have an important role as secondary messengers in numerous signal transduction processes, and cells invest much energy in controlling and maintaining a steep gradient between intracellular ( approximately 0.1-micromolar) and extracellular ( approximately 2-millimolar) Ca(2+) concentrations. Calmodulin-stimulated calcium pumps, which include the plasma-membrane Ca(2+)-ATPases (PMCAs), are key regulators of intracellular Ca(2+) in eukaryotes. They contain a unique amino- or carboxy-terminal regulatory domain responsible for autoinhibition, and binding of calcium-loaded calmodulin to this domain releases autoinhibition and activates the pump. However, the structural basis for the activation mechanism is unknown and a key remaining question is how calmodulin-mediated PMCA regulation can cover both basal Ca(2+) levels in the nanomolar range as well as micromolar-range Ca(2+) transients generated by cell stimulation. Here we present an integrated study combining the determination of the high-resolution crystal structure of a PMCA regulatory-domain/calmodulin complex with in vivo characterization and biochemical, biophysical and bioinformatics data that provide mechanistic insights into a two-step PMCA activation mechanism mediated by calcium-loaded calmodulin. The structure shows the entire PMCA regulatory domain and reveals an unexpected 2:1 stoichiometry with two calcium-loaded calmodulin molecules binding to different sites on a long helix. A multifaceted characterization of the role of both sites leads to a general structural model for calmodulin-mediated regulation of PMCAs that allows stringent, highly responsive control of intracellular calcium in eukaryotes, making it possible to maintain a stable, basal level at a threshold Ca(2+) concentration, where steep activation occurs.
Cruciat,2013 (23085770) Cruciat CM, Niehrs C "Secreted and transmembrane wnt inhibitors and activators." Cold Spring Harb Perspect Biol 2013 Mar 04
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-beta and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Suijkerbuijk,2012 (23079597) Suijkerbuijk SJ, Vleugel M, Teixeira A, Kops GJ "Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments." Dev Cell 2012 Oct 19
Maintenance of chromosomal stability depends on error-free chromosome segregation. The pseudokinase BUBR1 is essential for this, because it is a core component of the mitotic checkpoint and is required for formation of stable kinetochore-microtubule attachments. We have identified a conserved and highly phosphorylated domain (KARD) in BUBR1 that is crucial for formation of kinetochore-microtubule attachments. Deletion of this domain or prevention of its phosphorylation abolishes formation of kinetochore microtubules, which can be reverted by inhibiting Aurora B activity. Phosphorylation of KARD by PLK1 promotes direct interaction of BUBR1 with the PP2A-B56alpha phosphatase that counters excessive Aurora B activity at kinetochores. As a result, removal of BUBR1 from mitotic cells or inhibition of PLK1 reduces PP2A-B56alpha kinetochore binding and elevates phosphorylation of Aurora B substrates on the outer kinetochore. We propose that PLK1 and BUBR1 cooperate to stabilize kinetochore-microtubule interactions by regulating PP2A-B56alpha-mediated dephosphorylation of Aurora B substrates at the kinetochore-microtubule interface.
Ovejero,2012 (23051732) Ovejero S, Ayala P, Bueno A, Sacristan MP "Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation." Mol Biol Cell 2012 Dec 24
The activity of Cdk1-cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1-cyclin B1 activity through Wee1 dephosphorylation.
Garai,2012 (23047924) Garai A, Zeke A, Gogl G, Toro I, Fordos F, Blankenburg H, Barkai T, Varga J, Alexa A, Emig D, Albrecht M, Remenyi A "Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove." Sci Signal 2012 Oct 10
Mitogen-activated protein kinases (MAPKs) have a docking groove that interacts with linear "docking" motifs in binding partners. To determine the structural basis of binding specificity between MAPKs and docking motifs, we quantitatively analyzed the ability of 15 docking motifs from diverse MAPK partners to bind to c-Jun amino-terminal kinase 1 (JNK1), p38alpha, and extracellular signal-regulated kinase 2 (ERK2). Classical docking motifs mediated highly specific binding only to JNK1, and only those motifs with a sequence pattern distinct from the classical MAPK binding docking motif consensus differentiated between the topographically similar docking grooves of ERK and p38alpha. Crystal structures of four complexes of MAPKs with docking peptides, representing JNK-specific, ERK-specific, or ERK- and p38-selective binding modes, revealed that the regions located between consensus positions in the docking motifs showed conformational diversity. Although the consensus positions in the docking motifs served as anchor points that bound to common MAPK surface features and mostly contributed to docking in a nondiscriminatory fashion, the conformation of the intervening region between the anchor points mostly determined specificity. We designed peptides with tailored MAPK binding profiles by rationally changing the length and amino acid composition of intervening regions located between anchor points. These results suggest a coherent structural model for MAPK docking specificity that reveals how short linear motifs binding to a common kinase docking groove can mediate diverse interaction patterns and contribute to correct MAPK partner selection in signaling networks.
Alemu,2012 (23043107) Alemu EA, Lamark T, Torgersen KM, Birgisdottir AB, Larsen KB, Jain A, Olsvik H, Overvatn A, Kirkin V, Johansen T "ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs." J Biol Chem 2012 Nov 19
Autophagy is a lysosome-dependent degradation system conserved among eukaryotes. The mammalian Atg1 homologues, Unc-51 like kinase (ULK) 1 and 2, are multifunctional proteins with roles in autophagy, neurite outgrowth, and vesicle transport. The mammalian ULK complex involved in autophagy consists of ULK1, ULK2, ATG13, FIP200, and ATG101. We have used pulldown and peptide array overlay assays to study interactions between the ULK complex and six different ATG8 family proteins. Strikingly, in addition to ULK1 and ULK2, ATG13 and FIP200 interacted with human ATG8 proteins, all with strong preference for the GABARAP subfamily. Similarly, yeast and Drosophila Atg1 interacted with their respective Atg8 proteins, demonstrating the evolutionary conservation of the interaction. Use of peptide arrays allowed precise mapping of the functional LIR motifs, and two-dimensional scans of the ULK1 and ATG13 LIR motifs revealed which substitutions that were tolerated. This information, combined with an analysis of known LIR motifs, provides us with a clearer picture of sequence requirements for LIR motifs. In addition to the known requirements of the aromatic and hydrophobic residues of the core motif, we found the interactions to depend strongly on acidic residues surrounding the central core LIR motifs. A preference for either a hydrophobic residue or an acidic residue following the aromatic residue in the LIR motif is also evident. Importantly, the LIR motif is required for starvation-induced association of ULK1 with autophagosomes. Our data suggest that ATG8 proteins act as scaffolds for assembly of the ULK complex at the phagophore.
Garay-Arroyo,2012 (23027524) Garay-Arroyo A, De La Paz Sanchez M, Garcia-Ponce B, Azpeitia E, Alvarez-Buylla ER "Hormone symphony during root growth and development." Dev Dyn 2012 Nov 21
Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem.
von Muhlinen,2012 (23022382) von Muhlinen N, Akutsu M, Ravenhill BJ, Foeglein A, Bloor S, Rutherford TJ, Freund SM, Komander D, Randow F "LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy." Mol Cell 2012 Nov 12
Autophagy protects cellular homeostasis by capturing cytosolic components and invading pathogens for lysosomal degradation. Autophagy receptors target cargo to autophagy by binding ATG8 on autophagosomal membranes. The expansion of the ATG8 family in higher eukaryotes suggests that specific interactions with autophagy receptors facilitate differential cargo handling. However, selective interactors of ATG8 orthologs are unknown. Here we show that the selectivity of the autophagy receptor NDP52 for LC3C is crucial for innate immunity since cells lacking either protein cannot protect their cytoplasm against Salmonella. LC3C is required for antibacterial autophagy because in its absence the remaining ATG8 orthologs do not support efficient antibacterial autophagy. Structural analysis revealed that the selectivity of NDP52 for LC3C is conferred by a noncanonical LIR, in which lack of an aromatic residue is balanced by LC3C-specific interactions. Our report illustrates that specificity in the interaction between autophagy receptors and autophagy machinery is of functional importance to execute selective autophagy.
Kombrink,2012 (23011567) Kombrink E "Chemical and genetic exploration of jasmonate biosynthesis and signaling paths." Planta 2012 Oct 26
Jasmonates are lipid-derived compounds that act as signals in plant stress responses and developmental processes. Enzymes participating in biosynthesis of jasmonic acid (JA) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants have helped to define the pathway for synthesis of jasmonoyl-L-isoleucine (JA-Ile), the bioactive form of JA, and to identify the F-box protein COI1 as central regulatory unit. Details on the molecular mechanism of JA signaling were recently unraveled by the discovery of JAZ proteins that together with the adaptor protein NINJA and the general co-repressor TOPLESS form a transcriptional repressor complex. The current model of JA perception and signaling implies the SCF(COI1) complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ proteins for degradation by the 26S proteasome pathway, thereby allowing MYC2 and other transcription factors to activate gene expression. Chemical strategies, as integral part of jasmonate research, have helped the establishment of structure-activity relationships and the discovery of (+)-7-iso-JA-L-Ile as the major bioactive form of the hormone. The transient nature of its accumulation highlights the need to understand catabolism and inactivation of JA-Ile and recent studies indicate that oxidation of JA-Ile by cytochrome P450 monooxygenase is the major mechanism for turning JA signaling off. Plants contain numerous JA metabolites, which may have pronounced and differential bioactivity. A major challenge in the field of plant lipid signaling is to identify the cognate receptors and modes of action of these bioactive jasmonates/oxylipins.
Izawa,2012 (23007648) Izawa D, Pines J "Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation." J Cell Biol 2012 Oct 02
The spindle assembly checkpoint (SAC) is essential to ensure proper chromosome segregation and thereby maintain genomic stability. The SAC monitors chromosome attachment, and any unattached chromosomes generate a "wait anaphase" signal that blocks chromosome segregation. The target of the SAC is Cdc20, which activates the anaphase-promoting complex/cyclosome (APC/C) that triggers anaphase and mitotic exit by ubiquitylating securin and cyclin B1. The inhibitory complex formed by the SAC has recently been shown to inhibit Cdc20 by acting as a pseudosubstrate inhibitor, but in this paper, we show that Mad2 also inhibits Cdc20 by binding directly to a site required to bind the APC/C. Mad2 and the APC/C competed for Cdc20 in vitro, and a Cdc20 mutant that does not bind stably to Mad2 abrogated the SAC in vivo. Thus, we provide insights into how Cdc20 binds the APC/C and uncover a second mechanism by which the SAC inhibits the APC/C.
Kaipa,2013 (22992459) Kaipa BR, Shao H, Schafer G, Trinkewitz T, Groth V, Liu J, Beck L, Bogdan S, Abmayr SM, Onel SF "Dock mediates Scar- and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts." J Cell Sci 2013 Mar 21
The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.
Hain,2012 (22982544) Hain AU, Weltzer RR, Hammond H, Jayabalasingham B, Dinglasan RR, Graham DR, Colquhoun DR, Coppens I, Bosch J "Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction." J Struct Biol 2012 Nov 12
The autophagy-related proteins are thought to serve multiple functions in Plasmodium and are considered essential to parasite survival and development. We have studied two key interacting proteins, Atg8 and Atg3, of the autophagy pathway in Plasmodium falciparum. These proteins are vital for the formation and elongation of the autophagosome and essential to the process of macroautophagy. Autophagy may be required for conversion of the sporozoite into erythrocytic-infective merozoites and may be crucial for other functions during asexual blood stages. Here we describe the identification of an Atg8 family interacting motif (AIM) in Plasmodium Atg3, which binds Plasmodium Atg8. We determined the co-crystal structure of PfAtg8 with a short Atg3(1)(0)(3)(-)(1)(1)(0) peptide, corresponding to this motif, to 2.2 A resolution. Our in vitro interaction studies are in agreement with our X-ray crystal structure. Furthermore they suggest an important role for a unique Apicomplexan loop absent from human Atg8 homologues. Prevention of the protein-protein interaction of full length PfAtg8 with PfAtg3 was achieved at low micromolar concentrations with a small molecule, 1,2,3-trihydroxybenzene. Together our structural and interaction studies represent a starting point for future antimalarial drug discovery and design for this novel protein-protein interaction.
Zhang,2013 (22926519) Zhang J, Chen QM "Far upstream element binding protein 1: a commander of transcription, translation and beyond." Oncogene 2013 Jun 13
The far upstream binding protein 1 (FBP1) was first identified as a DNA-binding protein that regulates c-Myc gene transcription through binding to the far upstream element (FUSE) in the promoter region 1.5 kb upstream of the transcription start site. FBP1 collaborates with TFIIH and additional transcription factors for optimal transcription of the c-Myc gene. In recent years, mounting evidence suggests that FBP1 acts as an RNA-binding protein and regulates mRNA translation or stability of genes, such as GAP43, p27(Kip) and nucleophosmin. During retroviral infection, FBP1 binds to and mediates replication of RNA from Hepatitis C and Enterovirus 71. As a nuclear protein, FBP1 may translocate to the cytoplasm in apoptotic cells. The interaction of FBP1 with p38/JTV-1 results in FBP1 ubiquitination and degradation by the proteasomes. Transcriptional and post-transcriptional regulations by FBP1 contribute to cell proliferation, migration or cell death. FBP1 association with carcinogenesis has been reported in c-Myc dependent or independent manner. This review summarizes biochemical features of FBP1, its mechanism of action, FBP family members and the involvement of FBP1 in carcinogenesis.
Schmidt,2012 (22923767) Schmidt K, Xu Z, Mathews DH, Butler JS "Air proteins control differential TRAMP substrate specificity for nuclear RNA surveillance." RNA 2012 Sep 18
RNA surveillance systems function at critical steps during the formation and function of RNA molecules in all organisms. The RNA exosome plays a central role in RNA surveillance by processing and degrading RNA molecules in the nucleus and cytoplasm of eukaryotic cells. The exosome functions as a complex of proteins composed of a nine-member core and two ribonucleases. The identity of the molecular determinants of exosome RNA substrate specificity remains an important unsolved aspect of RNA surveillance. In the nucleus of Saccharomyces cerevisiae, TRAMP complexes recognize and polyadenylate RNAs, which enhances RNA degradation by the exosome and may contribute to its specificity. TRAMPs contain either of two putative RNA-binding factors called Air proteins. Previous studies suggested that these proteins function interchangeably in targeting the poly(A)-polymerase activity of TRAMPs to RNAs. Experiments reported here show that the Air proteins govern separable functions. Phenotypic analysis and RNA deep-sequencing results from air mutants reveal specific requirements for each Air protein in the regulation of the levels of noncoding and coding RNAs. Loss of these regulatory functions results in specific metabolic and plasmid inheritance defects. These findings reveal differential functions for Air proteins in RNA metabolism and indicate that they control the substrate specificity of the RNA exosome.
Aitio,2012 (22921828) Aitio O, Hellman M, Skehan B, Kesti T, Leong JM, Saksela K, Permi P "Enterohaemorrhagic Escherichia coli exploits a tryptophan switch to hijack host f-actin assembly." Structure 2012 Oct 15
Intrinsically disordered protein (IDP)-mediated interactions are often characterized by low affinity but high specificity. These traits are essential in signaling and regulation that require reversibility. Enterohaemorrhagic Escherichia coli (EHEC) exploit this situation by commandeering host cytoskeletal signaling to stimulate actin assembly beneath bound bacteria, generating "pedestals" that promote intestinal colonization. EHEC translocates two proteins, EspF(U) and Tir, which form a complex with the host protein IRTKS. The interaction of this complex with N-WASP triggers localized actin polymerization. We show that EspF(U) is an IDP that contains a transiently alpha-helical N-terminus and dynamic C-terminus. Our structure shows that single EspF(U) repeat forms a high-affinity trimolecular complex with N-WASP and IRTKS. We demonstrate that bacterial and cellular ligands interact with IRTKS SH3 in a similar fashion, but the bacterial protein has evolved to outcompete cellular targets by utilizing a tryptophan switch that offers superior binding affinity enabling EHEC-induced pedestal formation.
Myers,2012 (22915114) Myers KR, Wang G, Sheng Y, Conger KK, Casanova JE, Zhu JJ "Arf6-GEF BRAG1 regulates JNK-mediated synaptic removal of GluA1-containing AMPA receptors: a new mechanism for nonsyndromic X-linked mental disorder." J Neurosci 2012 Aug 22
Activity-dependent modifications of excitatory synapses contribute to synaptic maturation and plasticity, and are critical for learning and memory. Consequently, impairments in synapse formation or synaptic transmission are thought to be responsible for several types of mental disabilities. BRAG1 is a guanine nucleotide exchange factor for the small GTP-binding protein Arf6 that localizes to the postsynaptic density of excitatory synapses. Mutations in BRAG1 have been identified in families with X-linked intellectual disability (XLID). These mutations mapped to either the catalytic domain or an IQ-like motif; however, the pathophysiological basis of these mutations remains unknown. Here, we show that the BRAG1 IQ motif binds apo-calmodulin (CaM), and that calcium-induced CaM release triggers a reversible conformational change in human BRAG1. We demonstrate that BRAG1 activity, stimulated by activation of NMDA-sensitive glutamate receptors, depresses AMPA receptor (AMPA-R)-mediated transmission via JNK-mediated synaptic removal of GluA1-containing AMPA-Rs in rat hippocampal neurons. Importantly, a BRAG1 mutant that fails to activate Arf6 also fails to depress AMPA-R signaling, indicating that Arf6 activity is necessary for this process. Conversely, a mutation in the BRAG1 IQ-like motif that impairs CaM binding results in hyperactivation of Arf6 signaling and constitutive depression of AMPA transmission. Our findings reveal a role for BRAG1 in response to neuronal activity with possible clinical relevance to nonsyndromic XLID.
Avruch,2012 (22898666) Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR "Protein kinases of the Hippo pathway: regulation and substrates." Semin Cell Dev Biol 2012 Sep 26
The "Hippo" signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in Saccharomyces cerevisiae, e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologs Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin, e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP, promotes integrin clustering, actin remodeling and motility while restraining the proliferation of naive T cells. This review will summarize current knowledge of the structure and regulation of the kinases Hippo/Mst1&2, their noncatalytic binding partners, Salvador and the Rassf polypeptides, and their major substrates Warts/Lats1&2, Trc/ndr1&2, Mats/Mob1 and FOXO.
Guo,2012 (22889411) Guo Z, Song E, Ma S, Wang X, Gao S, Shao C, Hu S, Jia L, Tian R, Xu T, Gao Y "Proteomics strategy to identify substrates of LNX, a PDZ domain-containing E3 ubiquitin ligase." J Proteome Res 2012 Oct 05
Ubiquitin ligases (E3s) confer specificity to ubiquitination by recognizing target substrates. However, the substrates of most E3s have not been extensively discovered, and new methods are needed to efficiently and comprehensively identify these substrates. Mostly, E3s specifically recognize substrates via their protein interaction domains. We developed a novel integrated strategy to identify substrates of E3s containing protein interaction domains on a proteomic scale. The binding properties of the protein interaction domains were characterized by screening a random peptide library using a yeast two-hybrid system. Artificial degrons, consisting of a preferential ubiquitination sequence and particular interaction domain-binding motifs, were tested as potential substrates by in vitro ubiquitination assays. Using this strategy, not only substrates but also nonsubstrate regulators can be discovered. The detailed substrate recognition mechanisms, which are useful for drug discovery, can also be characterized. We used the Ligand of Numb protein X (LNX) family of E3s, a group of PDZ domain-containing RING-type E3 ubiquitin ligases, to demonstrate the feasibility of this strategy. Many potential substrates of LNX E3s were identified. Eight of the nine selected candidates were ubiquitinated in vitro, and two novel endogenous substrates, PDZ-binding kinase (PBK) and breakpoint cluster region protein (BCR), were confirmed in vivo. We further revealed that the LNX1-mediated ubiquitination and degradation of PBK inhibited cell proliferation and enhanced sensitivity to doxorubicin-induced apoptosis. The substrate recognition mechanism of LNX E3s was also characterized; this process involves the recognition of substrates via their specific PDZ domains by binding to the C-termini of the target proteins. This strategy can potentially be extended to a variety of E3s that contain protein interaction domain(s), thereby serving as a powerful tool for the comprehensive identification of their substrates on a proteomic scale.
Wojtaszek,2012 (22859295) Wojtaszek J, Lee CJ, D'Souza S, Minesinger B, Kim H, D'Andrea AD, Walker GC, Zhou P "Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) zeta, and Pol kappa." J Biol Chem 2012 Sep 28
DNA synthesis across lesions during genomic replication requires concerted actions of specialized DNA polymerases in a potentially mutagenic process known as translesion synthesis. Current models suggest that translesion synthesis in mammalian cells is achieved in two sequential steps, with a Y-family DNA polymerase (kappa, eta, iota, or Rev1) inserting a nucleotide opposite the lesion and with the heterodimeric B-family polymerase zeta, consisting of the catalytic Rev3 subunit and the accessory Rev7 subunit, replacing the insertion polymerase to carry out primer extension past the lesion. Effective translesion synthesis in vertebrates requires the scaffolding function of the C-terminal domain (CTD) of Rev1 that interacts with the Rev1-interacting region of polymerases kappa, eta, and iota and with the Rev7 subunit of polymerase zeta. We report the purification and structure determination of a quaternary translesion polymerase complex consisting of the Rev1 CTD, the heterodimeric Pol zeta complex, and the Pol kappa Rev1-interacting region. Yeast two-hybrid assays were employed to identify important interface residues of the translesion polymerase complex. The structural elucidation of such a quaternary translesion polymerase complex encompassing both insertion and extension polymerases bridged by the Rev1 CTD provides the first molecular explanation of the essential scaffolding function of Rev1 and highlights the Rev1 CTD as a promising target for developing novel cancer therapeutics to suppress translesion synthesis. Our studies support the notion that vertebrate insertion and extension polymerases could structurally cooperate within a megatranslesion polymerase complex (translesionsome) nucleated by Rev1 to achieve efficient lesion bypass without incurring an additional switching mechanism.
Xie,2012 (22857010) Xie W, Adayev T, Zhu H, Wegiel J, Wieraszko A, Hwang YW "Activity-dependent phosphorylation of dynamin 1 at serine 857." Biochemistry 2012 Aug 28
Dynamin 1 is thought to mediate synaptic transmission through interactions with multiple endocytic accessory proteins in a phosphorylation-dependent manner. Previously, we have shown that DYRK1A, a chromosome 21-encoded kinase implicated in the mental retardation of Down syndrome, phosphorylates primarily serine 857 (S857) in the proline-rich domain, found only in 1xa, one of the alternative C-terminal splicing isoforms of dynamin 1. Dynamin 1xa and 1xb isoforms are able to assemble into heterologous complexes and are coregulated by DYRK1A phosphorylation in binding to amphiphysin in vitro. To help in assessing the physiological significance of S857 phosphorylation, we developed a semiquantitative method for measuring the cellular level of phospho-S857 (pS857). Dynamin 1xa is highly phosphorylated at S857 in resting hippocampal neurons and in a hippocampal cell line, with >60% of all endogenous protein phosphorylated at this residue. In the hippocampus, the level of pS857 is dynamically controlled by synaptic stimulations with the involvement of Ca(2+)/calcineurin and AMPA/kainate receptors. Immunofluorescence staining shows that pS857 is found in the soma and throughout the entire length of apical dendrites in resting pyramidal neurons. Neuronal stimulation in the Schaffer collateral pathway promotes pS857 dephosphorylation in distal areas of apical dendrites, the region forming synapses with the impinging axons of Schaffer collateral. In summary, our results support the conclusion that S857 phosphorylation is a physiological event and its level is modulated by neuronal activity in nerve terminals.
Liu,2013 (22851512) Liu Z, Ren J, Cao J, He J, Yao X, Jin C, Xue Y "Systematic analysis of the Plk-mediated phosphoregulation in eukaryotes." Brief Bioinform 2013 May 22
Substantial evidence has confirmed that Polo-like kinases (Plks) play a crucial role in a variety of cellular processes via phosphorylation-mediated signaling transduction. Identification of Plk phospho-binding proteins and phosphorylation substrates is fundamental for elucidating the molecular mechanisms of Plks. Here, we present an integrative approach for the analysis of Plk-specific phospho-binding and phosphorylation sites (p-sites) in proteins. From the currently available phosphoproteomic data, we predicted tens of thousands of potential Plk phospho-binding and phosphorylation sites in eukaryotes, respectively. Furthermore, statistical analysis suggested that Plk phospho-binding proteins are more closely implicated in mitosis than their phosphorylation substrates. Additional computational analysis together with in vitro and in vivo experimental assays demonstrated that human Mis18B is a novel interacting partner of Plk1, while pT14 and pS48 of Mis18B were identified as phospho-binding sites. Taken together, this systematic analysis provides a global landscape of the complexity and diversity of potential Plk-mediated phosphoregulation, and the prediction results can be helpful for further experimental investigation.
Cromer,2012 (22844260) Cromer L, Heyman J, Touati S, Harashima H, Araou E, Girard C, Horlow C, Wassmann K, Schnittger A, De Veylder L, Mercier R "OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM." PLoS Genet 2012 Jul 30
Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor.
Takahashi,2012 (22837710) Takahashi T, Suzuki H, Inuzuka T, Shibata H, Maki M "Prediction of a New Ligand-Binding Site for Type 2 Motif based on the Crystal Structure of ALG-2 by Dry and Wet Approaches." Int J Mol Sci 2012 Jul 27
ALG-2 is a penta-EF-hand Ca(2+)-binding protein and interacts with a variety of intracellular proteins. Two types of ALG-2-binding motifs have been determined: type 1, PXYPXnYP (X, variable; n = 4), in ALIX and PLSCR3; type 2, PXPGF, in Sec31A and PLSCR3. The previously solved X-ray crystal structure of the complex between ALG-2 and an ALIX peptide containing type 1 motif showed that the peptide binds to Pocket 1 and Pocket 2. Co-crystallization of ALG-2 and type 2 motif-containing peptides has not been successful. To gain insights into the molecular basis of type 2 motif recognition, we searched for a new hydrophobic cavity by computational algorithms using MetaPocket 2.0 based on 3D structures of ALG-2. The predicted hydrophobic pocket designated Pocket 3 fits with N-acetyl-ProAlaProGlyPhe-amide, a virtual penta-peptide derived from one of the two types of ALG-2-binding sites in PLSCR3 (type 2 motif), using the molecular docking software AutoDock Vina. We investigated effects of amino acid substitutions of the predicted binding sites on binding abilities by pulldown assays using glutathione-S-transferase -fused ALG-2 of wild-type and mutant proteins and lysates of cells expressing green fluorescent protein -fused PLSCR3 of wild-type and mutants. Substitution of either L52 with Ala or F148 with Ser of ALG-2 caused loss of binding abilities to PLSCR3 lacking type 1 motif but retained those to PLSCR3 lacking type 2 motif, strongly supporting the hypothesis that Pocket 3 is the binding site for type 2 motif.
Fros,2012 (22837213) Fros JJ, Domeradzka NE, Baggen J, Geertsema C, Flipse J, Vlak JM, Pijlman GP "Chikungunya virus nsP3 blocks stress granule assembly by recruitment of G3BP into cytoplasmic foci." J Virol 2012 Sep 11
Chikungunya virus nonstructural protein nsP3 has an essential but unknown role in alphavirus replication and interacts with Ras-GAP SH3 domain-binding protein (G3BP). Here we describe the first known function of nsP3, to inhibit stress granule assembly by recruiting G3BP into cytoplasmic foci. A conserved SH3 domain-binding motif in nsP3 is essential for both nsP3-G3BP interactions and viral RNA replication. This study reveals a novel role for nsP3 as a regulator of the cellular stress response.
Pustovalova,2012 (22828282) Pustovalova Y, Bezsonova I, Korzhnev DM "The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase eta and Rev7 subunit of polymerase zeta." FEBS Lett 2012 Sep 21
Human Rev1 is a translesion synthesis (TLS) DNA polymerase involved in bypass replication across sites of DNA damage and postreplicational gap-filling. Rev1 plays an essential structural role in TLS by providing a binding platform for other TLS polymerases that insert nucleotides across DNA lesions (poleta, poliota, polkappa) and extend the distorted primer-terminus (polvarsigma). We use NMR spectroscopy to demonstrate that the Rev1 C-terminal domain utilizes independent interaction interfaces to simultaneously bind a fragment of the 'inserter' poleta and Rev7 subunit of the 'extender' polvarsigma, thereby serving as a cassette that may accommodate several polymerases making them instantaneously available for TLS.
Doidge,2012 (22817755) Doidge R, Mittal S, Aslam A, Winkler GS "Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex." Biochem Soc Trans 2012 Jul 23
The Ccr4-Not complex is one of the major deadenylase factors present in eukaryotic cells. This multi-subunit protein complex is composed of at least seven stably associated subunits in mammalian cells including two enzymatic deadenylase subunits: one DEDD (Asp-Glu-Asp-Asp)-type deadenylase (either CNOT7/human Caf1/Caf1a or CNOT8/human Pop2/Caf1b/Calif) and one EEP (endonuclease-exonuclease-phosphatase)-type enzyme (either CNOT6/human Ccr4/Ccr4a or CNOT6L/human Ccr4-like/Ccr4b). Here, the role of the human Ccr4-Not complex in cytoplasmic deadenylation of mRNA is discussed, including the mechanism of its recruitment to mRNA and the role of the BTG/Tob proteins.
Shindo,2012 (22814604) Shindo N, Kumada K, Hirota T "Separase sensor reveals dual roles for separase coordinating cohesin cleavage and cdk1 inhibition." Dev Cell 2012 Jul 20
Complete dissociation of sister chromatid cohesion and subsequent induction of poleward movement of disjoined sisters are two essential events underlying chromosome segregation; however, how cells coordinate these two processes is not well understood. Here, we developed a fluorescence-based sensor for the protease separase that mediates cohesin cleavage. We found that separase undergoes an abrupt activation shortly before anaphase onset in the vicinity of chromosomes. This activation profile of separase depends on the abilities of two of its binding proteins, securin and cyclin B1, to inhibit its protease activity and target it to chromosomes. Subsequent to its proteolytic activation, separase then binds to and inhibits a subset of cyclin B1-cdk1, which antagonizes cdk1-mediated phosphorylation on chromosomes and facilitates poleward movement of sisters in anaphase. Therefore, by consecutively acting as a protease and a cdk1 inhibitor, separase coordinates two key processes to achieve simultaneous and abrupt separation of sister chromatids.
Nithianandarajah-Jones,2012 (22800864) Nithianandarajah-Jones GN, Wilm B, Goldring CE, Muller J, Cross MJ "ERK5: structure, regulation and function." Cell Signal 2012 Nov
Extracellular signal-regulated kinase 5 (ERK5), also termed big mitogen-activated protein kinase-1 (BMK1), is the most recently identified member of the mitogen-activated protein kinase (MAPK) family and consists of an amino-terminal kinase domain, with a relatively large carboxy-terminal of unique structure and function that makes it distinct from other MAPK members. It is ubiquitously expressed in numerous tissues and is activated by a variety of extracellular stimuli, such as cellular stresses and growth factors, to regulate processes such as cell proliferation and differentiation. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade plays a critical role in cardiovascular development and vascular integrity. Recent data points to a potential role in pathological conditions such as cancer and tumour angiogenesis. This review focuses on the physiological and pathological role of ERK5, the regulation of this kinase and the recent development of small molecule inhibitors of the ERK5 signalling cascade.
Inuzuka,2012 (22770219) Inuzuka H, Gao D, Finley LW, Yang W, Wan L, Fukushima H, Chin YR, Zhai B, Shaik S, Lau AW, Wang Z, Gygi SP, Nakayama K, Teruya-Feldstein J, Toker A, Haigis MC, Pandolfi PP, Wei W "Acetylation-dependent regulation of Skp2 function." Cell 2012 Jul 09
Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration.
Yin,2012 (22767602) Yin X, Jin N, Gu J, Shi J, Zhou J, Gong CX, Iqbal K, Grundke-Iqbal I, Liu F "Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) modulates serine/arginine-rich protein 55 (SRp55)-promoted Tau exon 10 inclusion." J Biol Chem 2012 Aug 31
Tau exon 10, which encodes the second microtubule-binding repeat, is regulated by alternative splicing. Its alternative splicing generates Tau isoforms with three- or four-microtubule-binding repeats, named 3R-tau and 4R-tau. Adult human brain expresses equal levels of 3R-tau and 4R-tau. Imbalance of 3R-tau and 4R-tau causes Tau aggregation and neurofibrillary degeneration. In the present study, we found that splicing factor SRp55 (serine/arginine-rich protein 55) promoted Tau exon 10 inclusion. Knockdown of SRp55 significantly promoted Tau exon 10 exclusion. The promotion of Tau exon 10 inclusion by SRp55 required the arginine/serine-rich region, which was responsible for the subnucleic speckle localization. Dyrk1A (dual specificity tyrosine-phosphorylated and regulated kinase 1A) interacted with SRp55 and mainly phosphorylated its proline-rich domain. Phosphorylation of SRp55 by Dyrk1A suppressed its ability to promote Tau exon 10 inclusion. Up-regulation of Dyrk1A as in Down syndrome could lead to neurofibrillary degeneration by shifting the alternative splicing of Tau exon 10 to an increase in the ratio of 3R-tau/4R-tau.
Rajyaguru,2012 (22767211) Rajyaguru P, Parker R "RGG motif proteins: modulators of mRNA functional states." Cell Cycle 2012 Jul 15
A recent report demonstrates that a subset of RGG-motif proteins can bind translation initiation factor eIF4G and repress mRNA translation. This adds to the growing number of roles RGG-motif proteins play in modulating transcription, splicing, mRNA export and now translation. Herein, we review the nature and breadth of functions of RGG-motif proteins. In addition, the interaction of some RGG-motif proteins and other translation repressors with eIF4G highlights the role of eIF4G as a general modulator of mRNA function and not solely as a translation initiation factor.
Tian,2012 (22743616) Tian H, Zhang B, Di J, Jiang G, Chen F, Li H, Li L, Pei D, Zheng J "Keap1: one stone kills three birds Nrf2, IKKbeta and Bcl-2/Bcl-xL." Cancer Lett 2012 Aug 21
Oxidative stress, implicated in the etiology of cancer, results from an imbalance in the production of Reactive Oxygen Species (ROS) and cell's own antioxidant defenses. As a oxidative stress sensor, Keap1 functions as both an adaptor for Cul3Rbx1 E3 ligase complex mediated degradation of the transcription factor Nrf2, and a master regulator of cytoprotective gene expression. Although Nrf2 is a well known substrate for Keap1, the DGR domain of Keap1 has been reported also to bind other proteins directly or indirectly. IKKbeta as positive regulator of NF-kappaB is also destabilized by Keap1, which resulted in inhibiting NF-kappaB-derived tumor promotion. In addition, anti-apoptotic Bcl-2/Bcl-xL protein was identified as another substrate for the Keap1-Cul3-E3 ligase complex. Keap1 led to the repression and destabilization of Bcl-2, decreased Bcl-2:Bax heterodimers and facilitated cancer cells apoptosis. Given that Keap1 might function as a tumor suppressor protein to mitigate tumor progression, the different kinds of Keap1 somatic mutations were detected in numerous cancer cells. Therefore, it is important to understand the Keap1-involved signaling cascades. This review primarily focuses on the prevention of tumorigenesis role of Keap1 through negative regulation of three substrates Nrf2, IKKbeta and Bcl-2/Bcl-xL, with emphasis on the recent findings indicating the cancer guarder function of Keap1.
Labit,2012 (22713866) Labit H, Fujimitsu K, Bayin NS, Takaki T, Gannon J, Yamano H "Dephosphorylation of Cdc20 is required for its C-box-dependent activation of the APC/C." EMBO J 2012 Aug 02
The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase is tightly regulated to ensure programmed proteolysis in cells. The activity of the APC/C is positively controlled by cyclin-dependent kinase (CDK), but a second level of control must also exist because phosphorylation inactivates Cdc20, a mitotic APC/C co-activator. How Cdc20 is dephosphorylated specifically, when CDK is high, has remained unexplained. Here, we show that phosphatases are crucial to activate the APC/C. Cdc20 is phosphorylated at six conserved residues (S50/T64/T68/T79/S114/S165) by CDK in Xenopus egg extracts. When all the threonine residues are phosphorylated, Cdc20 binding to and activation of the APC/C are inhibited. Their dephosphorylation is regulated depending on the sites and protein phosphatase 2A, active in mitosis, is essential to dephosphorylate the threonine residues and activate the APC/C. Consistently, most of the Cdc20 bound to the APC/C in anaphase evades phosphorylation at T79. Furthermore, we show that the 'activation domain' of Cdc20 associates with the Apc6 and Apc8 core subunits. Our data suggest that dephosphorylation of Cdc20 is required for its loading and activation of the APC/C ubiquitin ligase.
Luck,2012 (22709956) Luck K, Charbonnier S, Trave G "The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains." FEBS Lett 2012 Aug 14
The canonical binding mode of PDZ domains to target motifs involves a small interface, unlikely to fully account for PDZ-target interaction specificities. Here, we review recent work on sequence context, defined as the regions surrounding not only the PDZ domains but also their target motifs. We also address the theoretical problem of defining the core of PDZ domains and the practical issue of designing PDZ constructs. Sequence context is found to introduce structural diversity, to impact the stability and solubility of constructs, and to deeply influence binding affinity and specificity, thereby increasing the difficulty of predicting PDZ-motif interactions. We expect that sequence context will have similar importance for other protein interactions mediated by globular domains binding to short linear motifs.
Wojtaszek,2012 (22700975) Wojtaszek J, Liu J, D'Souza S, Wang S, Xue Y, Walker GC, Zhou P "Multifaceted recognition of vertebrate Rev1 by translesion polymerases zeta and kappa." J Biol Chem 2012 Jul 27
Translesion synthesis is a fundamental biological process that enables DNA replication across lesion sites to ensure timely duplication of genetic information at the cost of replication fidelity, and it is implicated in development of cancer drug resistance after chemotherapy. The eukaryotic Y-family polymerase Rev1 is an essential scaffolding protein in translesion synthesis. Its C-terminal domain (CTD), which interacts with translesion polymerase zeta through the Rev7 subunit and with polymerases kappa, iota, and eta in vertebrates through the Rev1-interacting region (RIR), is absolutely required for function. We report the first solution structures of the mouse Rev1 CTD and its complex with the Pol kappa RIR, revealing an atypical four-helix bundle. Using yeast two-hybrid assays, we have identified a Rev7-binding surface centered at the alpha2-alpha3 loop and N-terminal half of alpha3 of the Rev1 CTD. Binding of the mouse Pol kappa RIR to the Rev1 CTD induces folding of the disordered RIR peptide into a three-turn alpha-helix, with the helix stabilized by an N-terminal cap. RIR binding also induces folding of a disordered N-terminal loop of the Rev1 CTD into a beta-hairpin that projects over the shallow alpha1-alpha2 surface and creates a deep hydrophobic cavity to interact with the essential FF residues juxtaposed on the same side of the RIR helix. Our combined structural and biochemical studies reveal two distinct surfaces of the Rev1 CTD that separately mediate the assembly of extension and insertion translesion polymerase complexes and provide a molecular framework for developing novel cancer therapeutics to inhibit translesion synthesis.
Holdsworth,2012 (22696217) Holdsworth G, Slocombe P, Doyle C, Sweeney B, Veverka V, Le Riche K, Franklin RJ, Compson J, Brookings D, Turner J, Kennedy J, Garlish R, Shi J, Newnham L, McMillan D, Muzylak M, Carr MD, Henry AJ, Ceska T, Robinson MK "Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors." J Biol Chem 2012 Aug 06
LRP5 and LRP6 are proteins predicted to contain four six-bladed beta-propeller domains and both bind the bone-specific Wnt signaling antagonist sclerostin. Here, we report the crystal structure of the amino-terminal region of LRP6 and using NMR show that the ability of sclerostin to bind to this molecule is mediated by the central core of sclerostin and does not involve the amino- and carboxyl-terminal flexible arm regions. We show that this structured core region interacts with LRP5 and LRP6 via an NXI motif (found in the sequence PNAIG) within a flexible loop region (loop 2) within the central core region. This sequence is related closely to a previously identified motif in laminin that mediates its interaction with the beta-propeller domain of nidogen. However, the NXI motif is not involved in the interaction of sclerostin with LRP4 (another beta-propeller containing protein in the LRP family). A peptide derived from the loop 2 region of sclerostin blocked the interaction of sclerostin with LRP5/6 and also inhibited Wnt1 but not Wnt3A or Wnt9B signaling. This suggests that these Wnts interact with LRP6 in different ways.
Pozhidaeva,2012 (22691049) Pozhidaeva A, Pustovalova Y, D'Souza S, Bezsonova I, Walker GC, Korzhnev DM "NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase eta." Biochemistry 2012 Jul 10
Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human Rev1 plays a key role in TLS by serving as a scaffold that provides an access of Y-family TLS polymerases poleta, iota, and kappa to their cognate DNA lesions and facilitates their subsequent exchange to polzeta that extends the distorted DNA primer-template. Rev1 interaction with the other major human TLS polymerases, poleta, iota, kappa, and the regulatory subunit Rev7 of polzeta, is mediated by Rev1 C-terminal domain (Rev1-CT). We used NMR spectroscopy to determine the spatial structure of the Rev1-CT domain (residues 1157-1251) and its complex with Rev1 interacting region (RIR) from poleta (residues 524-539). The domain forms a four-helix bundle with a well-structured N-terminal beta-hairpin docking against helices 1 and 2, creating a binding pocket for the two conserved Phe residues of the RIR motif that upon binding folds into an alpha-helix. NMR spin-relaxation and NMR relaxation dispersion measurements suggest that free Rev1-CT and Rev1-CT/poleta-RIR complex exhibit mus-ms conformational dynamics encompassing the RIR binding site, which might facilitate selection of the molecular configuration optimal for binding. These results offer new insights into the control of TLS in human cells by providing a structural basis for understanding the recognition of the Rev1-CT by Y-family DNA polymerases.
Chi,2012 (22674855) Chi CN, Bach A, Stromgaard K, Gianni S, Jemth P "Ligand binding by PDZ domains." Biofactors 2012 Sep-Oct
The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.
Srinivasan,2012 (22666276) Srinivasan M, Dunker AK "Proline rich motifs as drug targets in immune mediated disorders." Int J Pept 2012 Jun 05
The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs) are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies.
Dharmarajan,2012 (22665483) Dharmarajan V, Lee JH, Patel A, Skalnik DG, Cosgrove MS "Structural basis for WDR5 interaction (Win) motif recognition in human SET1 family histone methyltransferases." J Biol Chem 2012 Aug 13
Translocations and amplifications of the mixed lineage leukemia-1 (MLL1) gene are associated with aggressive myeloid and lymphocytic leukemias in humans. MLL1 is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases, which are required for transcription of genes involved in hematopoiesis and development. MLL1 associates with a subcomplex containing WDR5, RbBP5, Ash2L, and DPY-30 (WRAD), which together form the MLL1 core complex that is required for sequential mono- and dimethylation of H3K4. We previously demonstrated that WDR5 binds the conserved WDR5 interaction (Win) motif of MLL1 in vitro, an interaction that is required for the H3K4 dimethylation activity of the MLL1 core complex. In this investigation, we demonstrate that arginine 3765 of the MLL1 Win motif is required to co-immunoprecipitate WRAD from mammalian cells, suggesting that the WDR5-Win motif interaction is important for the assembly of the MLL1 core complex in vivo. We also demonstrate that peptides that mimic SET1 family Win motif sequences inhibit H3K4 dimethylation by the MLL1 core complex with varying degrees of efficiency. To understand the structural basis for these differences, we determined structures of WDR5 bound to six different naturally occurring Win motif sequences at resolutions ranging from 1.9 to 1.2 A. Our results reveal that binding energy differences result from interactions between non-conserved residues C-terminal to the Win motif and to a lesser extent from subtle variation of residues within the Win motif. These results highlight a new class of methylation inhibitors that may be useful for the treatment of MLL1-related malignancies.
Baietti,2012 (22660413) Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G "Syndecan-syntenin-ALIX regulates the biogenesis of exosomes." Nat Cell Biol 2012 Jul 03
The biogenesis of exosomes, small secreted vesicles involved in signalling processes, remains incompletely understood. Here, we report evidence that the syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin control the formation of exosomes. Syntenin interacts directly with ALIX through LYPX(n)L motifs, similarly to retroviral proteins, and supports the intraluminal budding of endosomal membranes. Syntenin exosomes depend on the availability of heparan sulphate, syndecans, ALIX and ESCRTs, and impact on the trafficking and confinement of FGF signals. This study identifies a key role for syndecan-syntenin-ALIX in membrane transport and signalling processes.
Xu,2012 (22649097) Xu C, Jin J, Bian C, Lam R, Tian R, Weist R, You L, Nie J, Bochkarev A, Tempel W, Tan CS, Wasney GA, Vedadi M, Gish GD, Arrowsmith CH, Pawson T, Yang XJ, Min J "Sequence-specific recognition of a PxLPxI/L motif by an ankyrin repeat tumbler lock." Sci Signal 2012 May 31
Ankyrin repeat family A protein 2 (ANKRA2) interacts with the plasma membrane receptor megalin and the class IIa histone deacetylases HDAC4 and HDAC5. We report that the ankyrin repeat domains of ANKRA2 and its close paralog regulatory factor X-associated ankyrin-containing protein (RFXANK) recognize a PxLPxI/L motif found in diverse binding proteins, including HDAC4, HDAC5, HDAC9, megalin, and regulatory factor X, 5 (RFX5). Crystal structures of the ankyrin repeat domain of ANKRA2 in complex with its binding peptides revealed that each of the middle three ankyrin repeats of ANKRA2 recognizes a residue from the PxLPxI/L motif in a tumbler-lock binding mode, with ANKRA2 acting as the lock and the linear binding motif serving as the key. Structural analysis showed that three disease-causing mutations in RFXANK affect residues that are critical for binding to RFX5. These results suggest a fundamental principle of longitudinal recognition of linear sequences by a repeat-type domain. In addition, phosphorylation of serine 350, a residue embedded within the PxLPxI/L motif of HDAC4, impaired the binding of ANKRA2 but generated a high-affinity docking site for 14-3-3 proteins, which may help sequester this HDAC in the cytoplasm. Thus, the binding preference of the PxLPxI/L motif is signal-dependent. Furthermore, proteome-wide screening suggested that a similar phosphorylation-dependent switch may operate in other pathways. Together, our findings uncover a previously uncharacterized sequence- and signal-dependent peptide recognition mode for a repeat-type protein domain.
Arboleda,2012 (22634751) Arboleda VA "Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome." Nat Genet 2012 Jun 28
IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome.
Rose,2012 (22634725) Rose R, Rose M, Ottmann C "Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI." J Struct Biol 2012 Oct 08
The regulation and function of peptidylarginine deiminase isoform VI (PAD6), which is a highly abundant protein associated with the cytoplasmic lattices in mammalian oocytes, is poorly understood so far. It has been shown previously, that 14-3-3 proteins, a class of regulatory adapter proteins ubiquitous in eukaryotes, bind to PAD6 in vivo in a phosphorylation dependent manner. Here we identify possible 14-3-3 binding sites in human PAD6 by in silico methods, looking for conserved, surface exposed serine residues. Two of these sites were confirmed as 14-3-3 binding sites by fluorescence polarization competition and X-ray crystallography. We furthermore suggest a role of RSK-type kinases in the phosphorylation of one of these two binding sites and provide evidence in the form of in vitro kinase assays with p70S6 kinase and RSK1.
Kettenbach,2012 (22633412) Kettenbach AN, Wang T, Faherty BK, Madden DR, Knapp S, Bailey-Kellogg C, Gerber SA "Rapid determination of multiple linear kinase substrate motifs by mass spectrometry." Chem Biol 2012 May 28
Kinase-substrate recognition depends on the chemical properties of the phosphorylatable residue as well as the surrounding linear sequence motif. Detailed knowledge of these characteristics increases the confidence of linking identified phosphorylation sites to kinases, predicting phosphorylation sites, and designing optimal peptide substrates. Here, we present a mass spectrometry-based approach for determining linear kinase substrate motifs by elaborating the positional and chemical preference of the kinase for a phosphorylatable residue using libraries of naturally-occurring peptides that are amenable to peptide identification by commonly used proteomics platforms. We applied this approach to a structurally and functionally diverse set of purified kinases, which recapitulated their previously described substrate motifs and discovered additional ones, including preferences of certain kinases for phosphorylatable residues adjacent to peptide termini. Furthermore, we identify specific and distinguishable motif elements for the four members of the polo-like kinase (Plk) family and verify members of these motif elements for Plk1 in vivo.
Schmidt,2012 (22624858) Schmidt F, Dietrich D, Eylenstein R, Groemping Y, Stehle T, Dodt G "The Role of Conserved PEX3 Regions in PEX19-Binding and Peroxisome Biogenesis." Traffic 2012 Aug 13
The human peroxins PEX3 and PEX19 are essential for peroxisome biogenesis. They mediate the import of membrane proteins as well as the de novo formation of peroxisomes. PEX19 binds newly synthesized peroxisomal membrane proteins post-translationally and directs them to peroxisomes by engaging PEX3, a protein anchored in the peroxisomal membrane. After protein insertion into the lipid bilayer, PEX19 is released back to the cytosol. Crystallographic analysis provided detailed insights into the PEX3-PEX19 interaction and identified three highly conserved regions, the PEX19-binding region, a hydrophobic groove and an acidic cluster, on the surface of PEX3. Here, we used site-directed mutagenesis and biochemical and functional assays to determine the role of these regions in PEX19-binding and peroxisome biogenesis. Mutations in the PEX19-binding region reduce the affinity for PEX19 and destabilize PEX3. Furthermore, we provide evidence for a crucial function of the PEX3-PEX19 complex during de novo formation of peroxisomes in peroxisome-deficient cells, pointing to a dual function of the PEX3-PEX19 interaction in peroxisome biogenesis. The maturation of preperoxisomes appears to require the hydrophobic groove near the base of PEX3, presumably by its involvement in peroxisomal membrane protein insertion, while the acidic cluster does not appear to be functionally relevant.
Finnen,2012 (22623775) Finnen RL, Pangka KR, Banfield BW "Herpes simplex virus 2 infection impacts stress granule accumulation." J Virol 2012 Jul 12
Interference with stress granule (SG) accumulation is gaining increased appreciation as a common strategy used by diverse viruses to facilitate their replication and to cope with translational arrest. Here, we examined the impact of infection by herpes simplex virus 2 (HSV-2) on SG accumulation by monitoring the localization of the SG components T cell internal antigen 1 (TIA-1), Ras-GTPase-activating SH3-domain-binding protein (G3BP), and poly(A)-binding protein (PABP). Our results indicate that SGs do not accumulate in HSV-2-infected cells and that HSV-2 can interfere with arsenite-induced SG accumulation early after infection. Surprisingly, SG accumulation was inhibited despite increased phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha), implying that HSV-2 encodes previously unrecognized activities designed to maintain translation initiation downstream of eIF2alpha. SG accumulation was not inhibited in HSV-2-infected cells treated with pateamine A, an inducer that works independently of eIF2alpha phosphorylation. The SGs that accumulated following pateamine A treatment of infected cells contained G3BP and PABP but were largely devoid of TIA-1. We also identified novel nuclear structures containing TIA-1 that form late in infection. These structures contain the RNA binding protein 68-kDa Src-associated in mitosis (Sam68) and were noticeably absent in infected cells treated with inhibitors of viral DNA replication, suggesting that they arise as a result of late events in the virus replicative cycle.
Faesen,2012 (22616864) Faesen AC, Luna-Vargas MP, Sixma TK "The role of UBL domains in ubiquitin-specific proteases." Biochem Soc Trans 2012 May 23
Ubiquitin conjugation and deconjugation provides a powerful signalling system to change the fate of its target enzymes. Ubiquitination levels are organized through a balance between ubiquitinating E1, E2 and E3 enzymes and deubiquitination by DUBs (deubiquitinating enzymes). These enzymes are tightly regulated to control their activity. In the present article, we discuss the different ways in which DUBs of the USP (ubiquitin-specific protease) family are regulated by internal domains with a UBL (ubiquitin-like) fold. The UBL domain in USP14 is important for its localization at the proteasome, which enhances catalysis. In contrast, a UBL domain in USP4 binds to the catalytic domain and competes with ubiquitin binding. In this process, the UBL domain mimics ubiquitin and partially inhibits catalysis. In USP7, there are five consecutive UBL domains, of which the last two affect catalytic activity. Surprisingly, they do not act like ubiquitin and activate catalysis rather than inhibiting it. These C-terminal UBL domains promote a conformational change that allows ubiquitin binding and organizes the catalytic centre. Thus it seems that UBL domains have different functions in different USPs. Other proteins can modulate the roles of UBL domains in USP4 and USP7. On one hand, the inhibition of USP4 can be relieved when the UBL is sequestered by another USP. On the other, the activation of USP7 is increased, when the UBL-activated state is stabilized by allosteric binding of GMP synthetase. Altogether, UBL domains appear to be able to regulate catalytic activity in USPs, but they can use widely different mechanisms of action, in which they may, as in USP4, or may not, as in USP7, use the direct resemblance to ubiquitin.
Min,2012 (22608923) Min SH, Lau AW, Lee TH, Inuzuka H, Wei S, Huang P, Shaik S, Lee DY, Finn G, Balastik M, Chen CH, Luo M, Tron AE, Decaprio JA, Zhou XZ, Wei W, Lu KP "Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase." Mol Cell 2012 Jul 03
Fbw7 is the substrate recognition component of the Skp1-Cullin-F-box (SCF)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers; however, little is known about the upstream signaling pathway(s) governing Fbw7 stability and cellular functions. Here we report that Fbw7 protein destruction and tumor suppressor function are negatively regulated by the prolyl isomerase Pin1. Pin1 interacts with Fbw7 in a phoshorylation-dependent manner and promotes Fbw7 self-ubiquitination and protein degradation by disrupting Fbw7 dimerization. Consequently, overexpressing Pin1 reduces Fbw7 abundance and suppresses Fbw7's ability to inhibit proliferation and transformation. By contrast, depletion of Pin1 in cancer cells leads to elevated Fbw7 expression, which subsequently reduces Mcl-1 abundance, sensitizing cancer cells to Taxol. Thus, Pin1-mediated inhibition of Fbw7 contributes to oncogenesis, and Pin1 may be a promising drug target for anticancer therapy.
Gutierrez-Escribano,2012 (22589718) Gutierrez-Escribano P, Zeidler U, Suarez MB, Bachellier-Bassi S, Clemente-Blanco A, Bonhomme J, Vazquez de Aldana CR, d'Enfert C, Correa-Bordes J "The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 during biofilm formation in Candida albicans." PLoS Pathog 2012 May 16
In nature, many microorganisms form specialized complex, multicellular, surface-attached communities called biofilms. These communities play critical roles in microbial pathogenesis. The fungal pathogen Candida albicans is associated with catheter-based infections due to its ability to establish biofilms. The transcription factor Bcr1 is a master regulator of C. albicans biofilm development, although the full extent of its regulation remains unknown. Here, we report that Bcr1 is a phosphoprotein that physically interacts with the NDR kinase Cbk1 and undergoes Cbk1-dependent phosphorylation. Mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to alanine markedly impaired Bcr1 function during biofilm formation and virulence in a mouse model of disseminated candidiasis. Cells lacking Cbk1, or any of its upstream activators, also had reduced biofilm development. Notably, mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to glutamate in cbk1Delta cells upregulated the transcription of Bcr1-dependent genes and partially rescued the biofilm defects of a cbk1Delta strain. Therefore, our data uncovered a novel role of the NDR/LATS kinase Cbk1 in the regulation of biofilm development through the control of Bcr1.
Gao,2012 (22586277) Gao Z, Poon HY, Li L, Li X, Palmesino E, Glubrecht DD, Colwill K, Dutta I, Kania A, Pawson T, Godbout R "Splice-mediated motif switching regulates disabled-1 phosphorylation and SH2 domain interactions." Mol Cell Biol 2012 Jun 29
Disabled-1 (Dab1) plays a key role in reelin-mediated neuronal migration during brain development. Tyrosine phosphorylation of Dab1 at two YQXI and two YXVP motifs recruits multiple SH2 domains, resulting in activation of a wide range of signaling cascades. However, the molecular mechanisms underlying the coordinated regulation of Dab1 downstream effectors remain poorly understood. Here, we show that alternative splicing results in inclusion of different combinations of YQXI and YXVP motifs in Dab1 isoforms during development. Dab1 variants with partial or complete loss of YQXI motifs are preferentially expressed at early developmental stages, whereas the commonly studied Dab1 is predominantly expressed at late developmental stages. Expression of Dab1 variants in 293T and Neuro2a cells reveals reduced levels or absence of tyrosine phosphorylation in variants that have lost one or both YQXI motifs. We further demonstrate that Dab1 variants differ in their abilities to activate Src and recruit distinct SH2 domains involved in specific downstream signaling pathways. We propose that coordinated expression of specific Dab1 isoforms in different populations of cells in the developing brain contributes to precise neuronal migration by modulating the activity of subsets of Dab1 downstream effectors.
Picard,2012 (22586270) Picard N, Caron V, Bilodeau S, Sanchez M, Mascle X, Aubry M, Tremblay A "Identification of estrogen receptor beta as a SUMO-1 target reveals a novel phosphorylated sumoylation motif and regulation by glycogen synthase kinase 3beta." Mol Cell Biol 2012 Jun 29
SUMO conjugation has emerged as a dynamic process in regulating protein function. Here we identify estrogen receptor beta (ERbeta) to be a new target of SUMO-1. ERbeta SUMO-1 modification occurs on a unique nonconsensus sumoylation motif which becomes fully competent upon phosphorylation of its contained serine residue, which provides the essential negative charge for sumoylation. This process is further regulated by phosphorylation of additional adjacent serine residues by glycogen synthase kinase 3beta (GSK3beta), which maximizes ERbeta sumoylation in response to hormone. SUMO-1 attachment prevents ERbeta degradation by competing with ubiquitin at the same acceptor site and dictates ERbeta transcriptional inhibition by altering estrogen-responsive target promoter occupancy and gene expression in breast cancer cells. These findings uncovered a novel phosphorylated sumoylation motif (pSuM), which consists of the sequence psiKXS (where psi represents a large hydrophobic residue) and which is connected to a GSK3-activated extension that functions as a SUMO enhancer. This extended pSuM offers a valuable signature to predict SUMO substrates under protein kinase regulation.
Zhang,2012 (22579256) Zhang M, Abrams C, Wang L, Gizzi A, He L, Lin R, Chen Y, Loll PJ, Pascal JM, Zhang JF "Structural basis for calmodulin as a dynamic calcium sensor." Structure 2012 May 14
Calmodulin is a prototypical and versatile Ca(2+) sensor with EF hands as its high-affinity Ca(2+) binding domains. Calmodulin is present in all eukaryotic cells, mediating Ca(2+)-dependent signaling. Upon binding Ca(2+), calmodulin changes its conformation to form complexes with a diverse array of target proteins. Despite a wealth of knowledge on calmodulin, little is known on how target proteins regulate calmodulin's ability to bind Ca(2+). Here, we take advantage of two splice variants of SK2 channels, which are activated by Ca(2+)-bound calmodulin but show different sensitivity to Ca(2+) for their activation. Protein crystal structures and other experiments show that, depending on which SK2 splice variant it binds to, calmodulin adopts drastically different conformations with different affinities for Ca(2+) at its C-lobe. Such target protein-induced conformational changes make calmodulin a dynamic Ca(2+) sensor capable of responding to different Ca(2+) concentrations in cellular Ca(2+) signaling.
Ivarsson,2012 (22576124) Ivarsson Y "Plasticity of PDZ domains in ligand recognition and signaling." FEBS Lett 2012 Aug 14
The PDZ domain is a protein-protein interacting module that plays an important role in the organization of signaling complexes. The recognition of short intrinsically disordered C-terminal peptide motifs is the archetypical PDZ function, but the functional repertoire of this versatile module also includes recognition of internal peptide sequences, dimerization and phospholipid binding. The PDZ function can be tuned by various means such as allosteric effects, changes of physiological buffer conditions and phosphorylation of PDZ domains and/or ligands, which poses PDZ domains as dynamic regulators of cell signaling. This review is focused on the plasticity of the PDZ interactions.
Matsuo,2012 (22542101) Matsuo K, Ohsumi K, Iwabuchi M, Kawamata T, Ono Y, Takahashi M "Kendrin is a novel substrate for separase involved in the licensing of centriole duplication." Curr Biol 2012 May 25
The centrosome, consisting of a pair of centrioles surrounded by pericentriolar material, directs the formation of bipolar spindles during mitosis. Aberrant centrosome number can promote chromosome instability, which is implicated in tumorigenesis. Thus, centrosome duplication needs to be tightly regulated to occur only once per cell cycle. Separase, a cysteine protease that triggers sister chromatid separation, is involved in centriole disengagement, which licenses centrosomes for the next round of duplication. However, at least two questions remain unsolved: what is the substrate relevant to the disengagement, and how does separase, activated at anaphase onset, act on the disengagement that occurs during late mitosis. Here, we show that kendrin, also named pericentrin, is cleaved by activated separase at a consensus site in vivo and in vitro, and this leads to the delayed release of kendrin from the centrosome later in mitosis. Furthermore, we demonstrate that expression of a noncleavable kendrin mutant suppresses centriole disengagement and subsequent centriole duplication. Based on these results, we propose that kendrin is a novel and crucial substrate for separase at the centrosome, protecting the engaged centrioles from premature disengagement and thereby blocking reduplication until the cell passes through mitosis.
Tasaki,2012 (22524314) Tasaki T, Sriram SM, Park KS, Kwon YT "The N-end rule pathway." Annu Rev Biochem 2012 Jun 05
The N-end rule pathway is a proteolytic system in which N-terminal residues of short-lived proteins are recognized by recognition components (N-recognins) as essential components of degrons, called N-degrons. Known N-recognins in eukaryotes mediate protein ubiquitylation and selective proteolysis by the 26S proteasome. Substrates of N-recognins can be generated when normally embedded destabilizing residues are exposed at the N terminus by proteolytic cleavage. N-degrons can also be generated through modifications of posttranslationally exposed pro-N-degrons of otherwise stable proteins; such modifications include oxidation, arginylation, leucylation, phenylalanylation, and acetylation. Although there are variations in components, degrons, and hierarchical structures, the proteolytic systems based on generation and recognition of N-degrons have been observed in all eukaryotes and prokaryotes examined thus far. The N-end rule pathway regulates homeostasis of various physiological processes, in part, through interaction with small molecules. Here, we review the biochemical mechanisms, structures, physiological functions, and small-molecule-mediated regulation of the N-end rule pathway.
Liu,2012 (22518098) Liu Z, Vogel HJ "Structural basis for the regulation of L-type voltage-gated calcium channels: interactions between the N-terminal cytoplasmic domain and Ca(2+)-calmodulin." Front Mol Neurosci 2012 Apr 20
It is well-known that the opening of L-type voltage-gated calcium channels can be regulated by calmodulin (CaM). One of the main regulatory mechanisms is calcium-dependent inactivation (CDI), where binding of apo-CaM to the cytoplasmic C-terminal domain of the channel can effectively sense an increase in the local calcium ion concentration. Calcium-bound CaM can bind to the IQ-motif region of the C-terminal region and block the calcium channel, thereby providing a negative feedback mechanism that prevents the rise of cellular calcium concentrations over physiological limits. Recently, an additional Ca(2+)/CaM-binding motif (NSCaTE, N-terminal spatial Ca(2+) transforming element) was identified in the amino terminal cytoplasmic region of Ca(v)1.2 and Ca(v)1.3. This motif exists only in Ca(v)1.2 and Ca(v)1.3 channels, and a pronounced N-lobe (Ca(2+)/CaM) CDI effect was found for Ca(v)1.3. To understand the molecular basis of this interaction, the complexes of Ca(2+)/CaM with the biosynthetically produced N-terminal region (residues 1-68) and NSCaTE peptide (residues 48-68) were investigated. We discovered that the NSCaTE motif in the N-terminal cytoplasmic region adopts an alpha-helical conformation, most likely due to its high alanine content. Additionally, the complex exhibits an unusual 1:2 protein:peptide stoichiometry when bound to Ca(2+)-CaM, and the N-lobe of CaM has a much stronger affinity for the peptide than the C-lobe. The complex structures of the isolated N- and C-lobe of Ca(2+)/CaM and the NSCaTE peptide were determined by nuclear magnetic resonance spectroscopy and data-driven protein-docking methods. Moreover, we also demonstrated that calcium binding protein 1, which competes with CaM for binding to the C-terminal cytoplasmic domain, binds only weakly to the NSCaTE region. The structures provide insights into the possible roles of this motif in the calcium regulatory network. Our study provides structural evidence for the CaM-bridge model proposed in previous studies.
Hanna,2012 (22505714) Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB "Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy." J Biol Chem 2012 Jun 04
Autophagy plays an important role in cellular quality control and is responsible for removing protein aggregates and dysfunctional organelles. Bnip3 is an atypical BH3-only protein that is known to cause mitochondrial dysfunction and cell death. Interestingly, Bnip3 can also protect against cell death by inducing mitochondrial autophagy. The mechanism for this process, however, remains poorly understood. Bnip3 contains a C-terminal transmembrane domain that is essential for homodimerization and proapoptotic function. In this study, we show that homodimerization of Bnip3 is also a requirement for induction of autophagy. Several Bnip3 mutants that do not interfere with its mitochondrial localization but disrupt homodimerization failed to induce autophagy in cells. In addition, we discovered that endogenous Bnip3 is localized to both mitochondria and the endoplasmic reticulum (ER). To investigate the effects of Bnip3 at mitochondria or the ER on autophagy, Bnip3 was targeted specifically to each organelle by substituting the Bnip3 transmembrane domain with that of Acta or cytochrome b(5). We found that Bnip3 enhanced autophagy in cells from both sites. We also discovered that Bnip3 induced removal of both ER (ERphagy) and mitochondria (mitophagy) via autophagy. The clearance of these organelles was mediated in part via binding of Bnip3 to LC3 on the autophagosome. Although ablation of the Bnip3-LC3 interaction by mutating the LC3 binding site did not impair the prodeath activity of Bnip3, it significantly reduced both mitophagy and ERphagy. Our data indicate that Bnip3 regulates the apoptotic balance as an autophagy receptor that induces removal of both mitochondria and ER.
Thaler,2012 (22498450) Thaler JS, Humphrey PT, Whiteman NK "Evolution of jasmonate and salicylate signal crosstalk." Trends Plant Sci 2012 May 14
The evolution of land plants approximately 470 million years ago created a new adaptive zone for natural enemies (attackers) of plants. In response to attack, plants evolved highly effective, inducible defense systems. Two plant hormones modulating inducible defenses are salicylic acid (SA) and jasmonic acid (JA). Current thinking is that SA induces resistance against biotrophic pathogens and some phloem feeding insects and JA induces resistance against necrotrophic pathogens, some phloem feeding insects and chewing herbivores. Signaling crosstalk between SA and JA commonly manifests as a reciprocal antagonism and may be adaptive, but this remains speculative. We examine evidence for and against adaptive explanations for antagonistic crosstalk, trace its phylogenetic origins and provide a hypothesis-testing framework for future research on the adaptive significance of SA-JA crosstalk.
Nagae,2012 (22451694) Nagae M, Re S, Mihara E, Nogi T, Sugita Y, Takagi J "Crystal structure of alpha5beta1 integrin ectodomain: atomic details of the fibronectin receptor." J Cell Biol 2012 Apr 04
Integrin alpha5beta1 is a major cellular receptor for the extracellular matrix protein fibronectin and plays a fundamental role during mammalian development. A crystal structure of the alpha5beta1 integrin headpiece fragment bound by an allosteric inhibitory antibody was determined at a 2.9-A resolution both in the absence and presence of a ligand peptide containing the Arg-Gly-Asp (RGD) sequence. The antibody-bound beta1 chain accommodated the RGD ligand with very limited structural changes, which may represent the initial step of cell adhesion mediated by nonactivated integrins. Furthermore, a molecular dynamics simulation pointed to an important role for Ca(2+) in the conformational coupling between the ligand-binding site and the rest of the molecule. The RGD-binding pocket is situated at the center of a trenchlike exposed surface on the top face of alpha5beta1 devoid of glycosylation sites. The structure also enabled the precise prediction of the acceptor residue for the auxiliary synergy site of fibronectin on the alpha5 subunit, which was experimentally confirmed by mutagenesis and kinetic binding assays.
Suzuki,2012 (22448252) Suzuki A, Saba R, Miyoshi K, Morita Y, Saga Y "Interaction between NANOS2 and the CCR4-NOT deadenylation complex is essential for male germ cell development in mouse." PLoS One 2012 Mar 26
Nanos is one of the evolutionarily conserved proteins implicated in germ cell development and we have previously shown that it interacts with the CCR4-NOT deadenylation complex leading to the suppression of specific RNAs. However, the molecular mechanism and physiological significance of this interaction have remained elusive. In our present study, we identify CNOT1, a component of the CCR4-NOT deadenylation complex, as a direct factor mediating the interaction with NANOS2. We find that the first 10 amino acids (AAs) of NANOS2 are required for this binding. We further observe that a NANOS2 mutant lacking these first 10 AAs (NANOS2-DeltaN10) fails to rescue defects in the Nanos2-null mouse. Our current data thus indicate that the interaction with the CCR4-NOT deadenylation complex is essential for NANOS2 function. In addition, we further demonstrate that NANOS2-DeltaN10 can associate with specific mRNAs as well as wild-type NANOS2, suggesting the existence of other NANOS2-associated factor(s) that determine the specificity of RNA-binding independently of the CCR4-NOT deadenylation complex.
Osugi,2012 (22437941) Osugi K, Suzuki H, Nomura T, Ariumi Y, Shibata H, Maki M "Identification of the P-body component PATL1 as a novel ALG-2-interacting protein by in silico and far-Western screening of proline-rich proteins." J Biochem 2012 Jun 06
ALG-2 (also named PDCD6) is a 22-kDa Ca(2+)-binding protein that belongs to the penta-EF-hand family including calpain small subunit and interacts with various proteins such as ALIX and Sec31A at their specific sites containing an ALG-2-binding motif (ABM) present in their respective Pro-rich region (PRR). In this study, to search for novel ALG-2-interacting proteins, we first performed in silico screening of ABM-containing PRRs in a human protein database. After selecting 17 sequences, we expressed the PRR or full-length proteins fused with green fluorescent protein (GFP) in HEK293T cells and analysed their abilities to bind to ALG-2 by Far-Western blotting using biotinylated ALG-2 as a probe. As a result, we found 10 positive new ALG-2-binding candidates with different degrees of binding ability. For further investigation, we selected PATL1 (alternatively designated Pat1b), a component of the P-body, which is a cytoplasmic non-membranous granule composed of translation-inactive mRNAs and proteins involved in mRNA decay. Interactions between endogenous PATL1 and ALG-2 proteins were demonstrated by a co-immunoprecipitation assay using their specific antibodies. Furthermore, in immunofluorescence microscopic analyses, PATL1 as well as DCP1A, a well-known P-body marker, co-localized with a subset of ALG-2. This is the first report showing interaction of ALG-2 with a P-body component.
Chao,2012 (22437499) Chao WC, Kulkarni K, Zhang Z, Kong EH, Barford D "Structure of the mitotic checkpoint complex." Nature 2012 Apr 13
In mitosis, the spindle assembly checkpoint (SAC) ensures genome stability by delaying chromosome segregation until all sister chromatids have achieved bipolar attachment to the mitotic spindle. The SAC is imposed by the mitotic checkpoint complex (MCC), whose assembly is catalysed by unattached chromosomes and which binds and inhibits the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome segregation. Here, using the crystal structure of Schizosaccharomyces pombe MCC (a complex of mitotic spindle assembly checkpoint proteins Mad2, Mad3 and APC/C co-activator protein Cdc20), we reveal the molecular basis of MCC-mediated APC/C inhibition and the regulation of MCC assembly. The MCC inhibits the APC/C by obstructing degron recognition sites on Cdc20 (the substrate recruitment subunit of the APC/C) and displacing Cdc20 to disrupt formation of a bipartite D-box receptor with the APC/C subunit Apc10. Mad2, in the closed conformation (C-Mad2), stabilizes the complex by optimally positioning the Mad3 KEN-box degron to bind Cdc20. Mad3 and p31(comet) (also known as MAD2L1-binding protein) compete for the same C-Mad2 interface, which explains how p31(comet) disrupts MCC assembly to antagonize the SAC. This study shows how APC/C inhibition is coupled to degron recognition by co-activators.
Hayashi,2012 (22433459) Hayashi K "The interaction and integration of auxin signaling components." Plant Cell Physiol 2012 Jun 06
IAA, a naturally occurring auxin, is a simple signaling molecule that regulates many diverse steps of plant development. Auxin essentially coordinates plant development through transcriptional regulation. Auxin binds to TIR1/AFB nuclear receptors, which are F-box subunits of the SCF ubiquitin ligase complex. The auxin signal is then modulated by the quantitative and qualitative responses of the Aux/IAA repressors and the auxin response factor (ARF) transcription factors. The specificity of the auxin-regulated gene expression profile is defined by several factors, such as the expression of these regulatory proteins, their post-transcriptional regulation, their stability and the affinity between these regulatory proteins. Auxin-binding protein 1 (ABP1) is a candidate protein for an auxin receptor that is implicated in non-transcriptional auxin signaling. ABP1 also affects TIR1/AFB-mediated auxin-responsive gene expression, implying that both the ABP1 and TIR1/AFB signaling machineries coordinately control auxin-mediated physiological events. Systematic approaches using the comprehensive mapping of the expression and interaction of signaling modules and computational modeling would be valuable for integrating our knowledge of auxin signals and responses.
Cunningham,2012 (22411985) Cunningham MR, McIntosh KA, Pediani JD, Robben J, Cooke AE, Nilsson M, Gould GW, Mundell S, Milligan G, Plevin R "Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4)." J Biol Chem 2012 Mar 13
Proteinase-activated receptors 4 (PAR(4)) is a Class A G-protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface in order for responsiveness to agonist to be retained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. In this study we found that PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit beta-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RxR) ER retention sequence located within intracellular loop-2 (R(183)AR), mutation of which ensured efficient membrane delivery of PAR(4). Surprisingly, we found that co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), through disruption of beta-COP1 binding and facilitating interaction with the chaperone protein 14-3-3 zeta. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signalling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease.
van der Veen,2012 (22404627) van der Veen AG, Ploegh HL "Ubiquitin-like proteins." Annu Rev Biochem 2012 Jun 05
The eukaryotic ubiquitin family encompasses nearly 20 proteins that are involved in the posttranslational modification of various macromolecules. The ubiquitin-like proteins (UBLs) that are part of this family adopt the beta-grasp fold that is characteristic of its founding member ubiquitin (Ub). Although structurally related, UBLs regulate a strikingly diverse set of cellular processes, including nuclear transport, proteolysis, translation, autophagy, and antiviral pathways. New UBL substrates continue to be identified and further expand the functional diversity of UBL pathways in cellular homeostasis and physiology. Here, we review recent findings on such novel substrates, mechanisms, and functions of UBLs.
Kawano,2012 (22404616) Kawano T, Araseki M, Araki Y, Kinjo M, Yamamoto T, Suzuki T "A small peptide sequence is sufficient for initiating kinesin-1 activation through part of TPR region of KLC1." Traffic 2012 May 11
Kinesin-1 anterogradely transports vesicles containing cargo proteins when a protein-protein interaction activates it from an inhibited state. The C-terminal cytoplasmic region of kinesin-1 cargo protein Alcadeinalpha (Alcalpha) interacts with the KLC1 subunit's tetratricopeptide repeat (TPR) region, activating kinesin-1's association with vesicles and anterograde transport. We found that either of two 10-amino-acid WD motifs in Alcalpha cytoplasmic region was necessary and sufficient to initiate this activation. An artificial transmembrane protein containing either WD motif induced kinesin-1's vesicular association and anterograde transport in a KLC-dependent manner, even in the normally inhibiting presence of excess KLC1, thus allowing us to analyze the KLC1 TPR-WD functional interaction in detail in vivo. A part of TPR region was dispensable for the WD motifs' activation of kinesin-1 and transport, indicating that only part of the TPR structure is required for this function in vivo. For a different kinesin-1 cargo protein, JIP1, an 11-amino-acid C-terminal region was sufficient to recruit KLC1 to vesicles, but did not activate transport. These observations suggest that structurally different TPR-interacting peptides may have different effects on kinesin-1. This mechanism may partly explain how kinesin-1 can organize the transport of a wide variety of cargo molecules.
Buttrick,2012 (22375062) Buttrick GJ, Lancaster TC, Meadows JC, Millar JB "Plo1 phosphorylates Dam1 to promote chromosome bi-orientation in fission yeast." J Cell Sci 2012 Apr 1
The fungal-specific heterodecameric outer kinetochore DASH complex facilitates the interaction of kinetochores with spindle microtubules. In budding yeast, where kinetochores bind a single microtubule, the DASH complex is essential, and phosphorylation of Dam1 by the Aurora kinase homologue, Ipl1, causes detachment of kinetochores from spindle microtubules. We demonstrate that in the distantly related fission yeast, where the DASH complex is not essential for viability and kinetochores bind multiple microtubules, Dam1 is instead phosphorylated on serine 143 by the Polo kinase homologue, Plo1, during prometaphase and metaphase. This phosphorylation site is conserved in most fungal Dam1 proteins, including budding yeast Dam1. We show that Dam1 phosphorylation by Plo1 is dispensable for DASH assembly and chromosome retrieval but instead aids tension-dependent chromosome bi-orientation.
Schmidt,2012 (22361144) Schmidt O, Teis D "The ESCRT machinery." Curr Biol 2012 Feb 24
Heroes,2013 (22360570) Heroes E, Lesage B, Gornemann J, Beullens M, Van Meervelt L, Bollen M "The PP1 binding code: a molecular-lego strategy that governs specificity." FEBS J 2013 Jan 29
Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo.
Popovic,2012 (22354992) Popovic D, Akutsu M, Novak I, Harper JW, Behrends C, Dikic I "Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers." Mol Cell Biol 2012 Apr 11
Autophagy is an evolutionarily conserved degradation pathway characterized by dynamic rearrangement of membranes that sequester cytoplasm, protein aggregates, organelles, and pathogens for delivery to the vacuole and lysosome, respectively. The ability of autophagosomal membranes to act selectively toward specific cargo is dependent on the small ubiquitin-like modifier ATG8/LC3 and the LC3-interacting region (LIR) present in autophagy receptors. Here, we describe a comprehensive protein-protein interaction analysis of TBC (Tre2, Bub2, and Cdc16) domain-containing Rab GTPase-activating proteins (GAPs) as potential autophagy adaptors. We identified 14 TBC domain-containing Rab GAPs that bind directly to ATG8 modifiers and that colocalize with LC3-positive autophagy membranes in cells. Intriguingly, one of our screening hits, TBC1D5, contains two LIR motifs. The N-terminal LIR was critical for interaction with the retromer complex and transport of cargo. Direct binding of the retromer component VPS29 to TBC1D5 could be titrated out by LC3, indicating a molecular switch between endosomes and autophagy. Moreover, TBC1D5 could bridge the endosome and autophagosome via its C-terminal LIR motif. During starvation-induced autophagy, TBC1D5 was relocalized from endosomal localization to the LC3-positive autophagosomes. We propose that LC3-interacting Rab GAPs are implicated in the reprogramming of the endocytic trafficking events under starvation-induced autophagy.
Sczaniecka,2012 (22337874) Sczaniecka M, Gladstone K, Pettersson S, McLaren L, Huart AS, Wallace M "MDM2 protein-mediated ubiquitination of numb protein: identification of a second physiological substrate of MDM2 that employs a dual-site docking mechanism." J Biol Chem 2012 Apr 23
The E3 ubiquitin ligase, MDM2, uses a dual-site mechanism to ubiquitinate and degrade the tumor suppressor protein p53, involving interactions with the N-terminal hydrophobic pocket and the acidic domain of MDM2. The results presented here demonstrate that MDM2 also uses this same dual-site mechanism to bind to the cell fate determinant NUMB with both the N-terminal hydrophobic pocket and the acidic domain of MDM2 also involved in forming the interaction with NUMB. Furthermore, the acidic domain interactions are crucial for MDM2-mediated ubiquitination of NUMB. Contrary to p53, where two separate domains form the interface with MDM2, only one region within the phosphotyrosine binding domain of NUMB (amino acids 113-148) mediates binding to both these regions of MDM2. By binding to both domains on MDM2, NUMB disrupts the MDM2-p53 complex and MDM2-catalyzed ubiquitination of p53. Therefore, we have identified the mechanism NUMB uses to regulate the steady-state levels of the p53 in cells. By targeting the acidic domain of MDM2 using acid domain-binding ligands we can overcome MDM2-mediated ubiquitination and degradation of NUMB impacting on the stabilization of p53 in cells. Furthermore, delivery of MDM2 acid domain-binding ligands to cancer cells promotes p53-dependent growth arrest and the induction of apoptosis. This highlights the dual-site mechanism of MDM2 on another physiological substrate and identifies the acid domain as well as N terminus as a potential target for small molecules that inhibit MDM2.
Lee,2012 (22334659) Lee KY, Bang SW, Yoon SW, Lee SH, Yoon JB, Hwang DS "Phosphorylation of ORC2 protein dissociates origin recognition complex from chromatin and replication origins." J Biol Chem 2012 Apr 11
During the late M to the G(1) phase of the cell cycle, the origin recognition complex (ORC) binds to the replication origin, leading to the assembly of the prereplicative complex for subsequent initiation of eukaryotic chromosome replication. We found that the cell cycle-dependent phosphorylation of human ORC2, one of the six subunits of ORC, dissociates ORC2, -3, -4, and -5 (ORC2-5) subunits from chromatin and replication origins. Phosphorylation at Thr-116 and Thr-226 of ORC2 occurs by cyclin-dependent kinase during the S phase and is maintained until the M phase. Phosphorylation of ORC2 at Thr-116 and Thr-226 dissociated the ORC2-5 from chromatin. Consistent with this, the phosphomimetic ORC2 protein exhibited defective binding to replication origins as well as to chromatin, whereas the phosphodefective protein persisted in binding throughout the cell cycle. These results suggest that the phosphorylation of ORC2 dissociates ORC from chromatin and replication origins and inhibits binding of ORC to newly replicated DNA.
Ma,2012 (22331464) Ma J, Cai H, Wu T, Sobhian B, Huo Y, Alcivar A, Mehta M, Cheung KL, Ganesan S, Kong AN, Zhang DD, Xia B "PALB2 interacts with KEAP1 to promote NRF2 nuclear accumulation and function." Mol Cell Biol 2012 Mar 23
PALB2/FANCN is mutated in breast and pancreatic cancers and Fanconi anemia (FA). It controls the intranuclear localization, stability, and DNA repair function of BRCA2 and links BRCA1 and BRCA2 in DNA homologous recombination repair and breast cancer suppression. Here, we show that PALB2 directly interacts with KEAP1, an oxidative stress sensor that binds and represses the master antioxidant transcription factor NRF2. PALB2 shares with NRF2 a highly conserved ETGE-type KEAP1 binding motif and can effectively compete with NRF2 for KEAP1 binding. PALB2 promotes NRF2 accumulation and function in the nucleus and lowers the cellular reactive oxygen species (ROS) level. In addition, PALB2 also regulates the rate of NRF2 export from the nucleus following induction. Our findings identify PALB2 as a regulator of cellular redox homeostasis and provide a new link between oxidative stress and the development of cancer and FA.
Shyu,2012 (22327740) Shyu C, Figueroa P, Depew CL, Cooke TF, Sheard LB, Moreno JE, Katsir L, Zheng N, Browse J, Howe GA "JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis." Plant Cell 2012 Mar 28
The lipid-derived hormone jasmonoyl-L-Ile (JA-Ile) initiates large-scale changes in gene expression by stabilizing the interaction of JASMONATE ZIM domain (JAZ) repressors with the F-box protein CORONATINE INSENSITIVE1 (COI1), which results in JAZ degradation by the ubiquitin-proteasome pathway. Recent structural studies show that the JAZ1 degradation signal (degron) includes a short conserved LPIAR motif that seals JA-Ile in its binding pocket at the COI1-JAZ interface. Here, we show that Arabidopsis thaliana JAZ8 lacks this motif and thus is unable to associate strongly with COI1 in the presence of JA-Ile. As a consequence, JAZ8 is stabilized against jasmonate (JA)-mediated degradation and, when ectopically expressed in Arabidopsis, represses JA-regulated growth and defense responses. These findings indicate that sequence variation in a hypervariable region of the degron affects JAZ stability and JA-regulated physiological responses. We also show that JAZ8-mediated repression depends on an LxLxL-type EAR (for ERF-associated amphiphilic repression) motif at the JAZ8 N terminus that binds the corepressor TOPLESS and represses transcriptional activation. JAZ8-mediated repression does not require the ZIM domain, which, in other JAZ proteins, recruits TOPLESS through the EAR motif-containing adaptor protein NINJA. These findings show that EAR repression domains in a subgroup of JAZ proteins repress gene expression through direct recruitment of corepressors to cognate transcription factors.
Kondo-Okamoto,2012 (22308029) Kondo-Okamoto N, Noda NN, Suzuki SW, Nakatogawa H, Takahashi I, Matsunami M, Hashimoto A, Inagaki F, Ohsumi Y, Okamoto K "Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy." J Biol Chem 2012 Mar 26
Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.
Bhardwaj,2012 (22301153) Bhardwaj K, Liu P, Leibowitz JL, Kao CC "The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein." J Virol 2012 Mar 29
Coronaviruses encode an endoribonuclease, Nsp15, which has a poorly defined role in infection. Sequence analysis revealed a retinoblastoma protein-binding motif (LXCXE/D) in the majority of the Nsp15 of the severe acute respiratory syndrome coronavirus (SARS-CoV) and its orthologs in the alpha and beta coronaviruses. The endoribonuclease activity of the SARS-CoV Nsp15 (sNsp15) was stimulated by retinoblastoma protein (pRb) in vitro, and the two proteins can be coimmunoprecipitated from cellular extracts. Mutations in the pRb-binding motif rendered sNsp15 to be differentially modified by ubiquitin in cells, and cytotoxicity was observed upon its expression. Expression of the sNsp15 in cells resulted in an increased abundance of pRb in the cytoplasm, decreased overall levels of pRb, an increased proportion of cells in the S phase of the cell cycle, and an enhanced expression from a promoter normally repressed by pRb. The endoribonuclease activity of the mouse hepatitis virus (MHV) A59 Nsp15 was also increased by pRb in vitro, and an MHV with mutations in the LXCXE/D-motif, named vLC, exhibited a smaller plaque diameter and reduced the virus titer by approximately 1 log. Overexpression of pRb delayed the viral protein production by wild-type MHV but not by vLC. This study reveals that pRb and its interaction with Nsp15 can affect coronavirus infection and adds coronaviruses to a small but growing family of RNA viruses that encode a protein to interact with pRb.
Peti,2013 (22284538) Peti W, Nairn AC, Page R "Structural basis for protein phosphatase 1 regulation and specificity." FEBS J 2013 Jan 29
The ubiquitous serine/threonine protein phosphatase 1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. However, the free catalytic subunit of PP1, while an effective enzyme, lacks substrate specificity. Instead, it depends on a diverse set of regulatory proteins (>/= 200) to confer specificity towards distinct substrates. Here, we discuss recent advances in structural studies of PP1 holoenzyme complexes and summarize the new insights these studies have provided into the molecular basis of PP1 regulation and specificity.
Mikitova,2012 (22276202) Mikitova V, Levine TP "Analysis of the key elements of FFAT-like motifs identifies new proteins that potentially bind VAP on the ER, including two AKAPs and FAPP2." PLoS One 2012
BACKGROUND: Two phenylalanines (FF) in an acidic tract (FFAT)-motifs were originally described as having seven elements: an acidic flanking region followed by 6 residues (EFFDA-E). Such motifs are found in several lipid transfer protein (LTP) families, and they interact with a protein on the cytosolic face of the ER called vesicle-associated membrane protein-associated protein (VAP). Mutation of which causes ER stress and motor neuron disease, making it important to determine which proteins bind VAP. Among other proteins that bind VAP, some contain FFAT-like motifs that are missing one or more of the seven elements. Defining how much variation is tolerated in FFAT-like motifs is a preliminary step prior to the identification of the full range of VAP interactors. RESULTS: We used a quantifiable in vivo system that measured ER targeting in a reporter yeast strain that over-expressed VAP to study the effect of substituting different elements of FFAT-like motifs in turn. By defining FFAT-like motifs more widely than before, we found them in novel proteins the functions of which had not previously been directly linked to the ER, including: two PKA anchoring proteins, AKAP220 and AKAP110; a family of plant LTPs; and the glycolipid LTP phosphatidylinositol-four-phosphate adaptor-protein-2 (FAPP-2). CONCLUSION: All of the seven essential elements of a FFAT motif tolerate variation, and weak targeting to the ER via VAP is still detected if two elements are substituted. In addition to the strong FFAT motifs already known, there are additional proteins with weaker FFAT-like motifs, which might be functionally important VAP interactors.
Zhang,2012 (22266653) Zhang P, Lee H, Brunzelle JS, Couture JF "The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases." Nucleic Acids Res 2012 May 14
In mammals, the SET1 family of lysine methyltransferases (KMTs), which includes MLL1-5, SET1A and SET1B, catalyzes the methylation of lysine-4 (Lys-4) on histone H3. Recent reports have demonstrated that a three-subunit complex composed of WD-repeat protein-5 (WDR5), retinoblastoma-binding protein-5 (RbBP5) and absent, small, homeotic disks-2-like (ASH2L) stimulates the methyltransferase activity of MLL1. On the basis of studies showing that this stimulation is in part controlled by an interaction between WDR5 and a small region located in close proximity of the MLL1 catalytic domain [referred to as the WDR5-interacting motif (Win)], it has been suggested that WDR5 might play an analogous role in scaffolding the other SET1 complexes. We herein provide biochemical and structural evidence showing that WDR5 binds the Win motifs of MLL2-4, SET1A and SET1B. Comparative analysis of WDR5-Win complexes reveals that binding of the Win motifs is achieved by the plasticity of WDR5 peptidyl-arginine-binding cleft allowing the C-terminal ends of the Win motifs to be maintained in structurally divergent conformations. Consistently, enzymatic assays reveal that WDR5 plays an important role in the optimal stimulation of MLL2-4, SET1A and SET1B methyltransferase activity by the RbBP5-ASH2L heterodimer. Overall, our findings illustrate the function of WDR5 in scaffolding the SET1 family of KMTs and further emphasize on the important role of WDR5 in regulating global histone H3 Lys-4 methylation.
Coon,2012 (22228094) Coon BG, Hernandez V, Madhivanan K, Mukherjee D, Hanna CB, Barinaga-Rementeria Ramirez I, Lowe M, Beales PL, Aguilar RC "The Lowe syndrome protein OCRL1 is involved in primary cilia assembly." Hum Mol Genet 2012 Mar 28
Lowe syndrome (LS) is a devastating, X-linked genetic disease characterized by the presence of congenital cataracts, profound learning disabilities and renal dysfunction. Unfortunately, children affected with LS often die early of health complications including renal failure. Although this syndrome was first described in the early 1950s and the affected gene, OCRL1, was identified more than 17 years ago, the mechanism by which Ocrl1 defects lead to LS's symptoms remains unknown. Here we show that LS display characteristics of a ciliopathy. Specifically, we found that patients' cells have defects in the assembly of primary cilia and this phenotype was reproduced in cell lines by knock-down of Ocrl1. Importantly, this defect could be rescued by re-introduction of WT Ocrl1 in both patient and Ocrl1 knock-down cells. In addition, a zebrafish animal model of LS exhibited cilia defects and multiple morphological and anatomical abnormalities typically seen in ciliopathies. Mechanistically, we show that Ocrl1 is involved in protein trafficking to the primary cilia in an Rab8-and IPIP27/Ses-dependent manner. Taking into consideration the relevance of the signaling pathways hosted by the primary cilium, our results suggest hitherto unrecognized mechanisms by which Ocrl1 deficiency may contribute to the phenotypic characteristics of LS. This conceptual change in our understanding of the disease etiology may provide an alternative avenue for the development of therapies.
Sharma,2012 (22223637) Sharma J, Mulherkar S, Mukherjee D, Jana NR "Malin regulates Wnt signaling pathway through degradation of dishevelled2." J Biol Chem 2012 Feb 24
Using yeast-two hybrid screening followed by co-immunoprecipitation assay, we have found that the Lafora disease ubiquitin ligase malin interacts with dishevelled2, a key mediator of Wnt signaling pathway. Overexpression of malin enhances the degradation of dishevelled2 and inhibits Wnt signaling, which is evident from the down-regulation of beta-catenin target genes and the decrease in beta-catenin-mediated transcriptional activity. Partial knockdown of malin significantly increases the level of dishevelled2 and up-regulates Wnt signaling. Several malin mutants are found to be ineffective in degrading dishevelled2 and regulating the Wnt pathway. We have also found that malin enhances K48- and K63-linked ubiquitination of dishevelled2 that could lead to its degradation through both proteasome and autophagy. Altogether, our results indicate that malin regulates Wnt signaling pathway through the degradation of dishevelled2 and suggest possible deregulation of Wnt signaling in Lafora disease.
Camp,2012 (22215675) Camp ND, James RG, Dawson DW, Yan F, Davison JM, Houck SA, Tang X, Zheng N, Major MB, Moon RT "Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein." J Biol Chem 2012 Feb 27
WTX is a tumor suppressor protein that is lost or mutated in up to 30% of cases of Wilms tumor. Among its known functions, WTX interacts with the beta-transducin repeat containing family of ubiquitin ligase adaptors and promotes the ubiquitination and degradation of the transcription factor beta-catenin, a key control point in the WNT/beta-catenin signaling pathway. Here, we report that WTX interacts with a second ubiquitin ligase adaptor, KEAP1, which functions to regulate the ubiquitination of the transcription factor NRF2, a key control point in the antioxidant response. Surprisingly, we find that unlike its ability to promote the ubiquitination of beta-catenin, WTX inhibits the ubiquitination of NRF2. WTX and NRF2 compete for binding to KEAP1, and thus loss of WTX leads to rapid ubiquitination and degradation of NRF2 and a reduced response to cytotoxic insult. These results expand our understanding of the molecular mechanisms of WTX and reveal a novel regulatory mechanism governing the antioxidant response.
Gareau,2012 (22194619) Gareau JR, Reverter D, Lima CD "Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2." J Biol Chem 2012 Feb 15
The RanBP2 nucleoporin contains an internal repeat domain (IR1-M-IR2) that catalyzes E3 ligase activity and forms a stable complex with SUMO-modified RanGAP1 and UBC9 at the nuclear pore complex. RanBP2 exhibits specificity for SUMO1 as RanGAP1-SUMO1/UBC9 forms a more stable complex with RanBP2 compared with RanGAP1-SUMO2 that results in greater protection of RanGAP-SUMO1 from proteases. The IR1-M-IR2 SUMO E3 ligase activity also shows a similar preference for SUMO1. We utilized deletions and domain swap constructs in protease protection assays and automodification assays to define RanBP2 domains responsible for RanGAP1-SUMO1 protection and SUMO1-specific E3 ligase activity. Our data suggest that elements in both IR1 and IR2 exhibit specificity for SUMO1. IR1 protects RanGAP1-SUMO1/UBC9 and functions as the primary E3 ligase of RanBP2, whereas IR2 retains the ability to interact with SUMO1 to promote SUMO1-specific E3 ligase activity. To determine the structural basis for SUMO1 specificity, a hybrid IR1 construct and IR1 were used to determine three new structures for complexes containing UBC9 with RanGAP1-SUMO1/2. These structures show more extensive contacts among SUMO, UBC9, and RanBP2 in complexes containing SUMO1 compared with SUMO2 and suggest that differences in SUMO specificity may be achieved through these subtle conformational differences.
Lara-Gonzalez,2012 (22193957) Lara-Gonzalez P, Scott MI, Diez M, Sen O, Taylor SS "BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner." J Cell Sci 2012 Jan 16
The spindle assembly checkpoint (SAC) is a signalling network that delays anaphase onset until all the chromosomes are attached to the mitotic spindle through their kinetochores. The downstream target of the spindle checkpoint is the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that targets several anaphase inhibitors for proteolysis, including securin and cyclin B1. In the presence of unattached kinetochores, the APC/C is inhibited by the mitotic checkpoint complex (MCC), a tetrameric complex composed of three SAC components, namely BubR1, Bub3 and Mad2, and the APC/C co-activator Cdc20. The molecular mechanisms underlying exactly how unattached kinetochores catalyse MCC formation and how the MCC then inhibits the APC/C remain obscure. Here, using RNAi complementation and in vitro ubiquitylation assays, we investigate the domains in BubR1 required for APC/C inhibition. We observe that kinetochore localisation of BubR1 is required for efficient MCC assembly and SAC response. Furthermore, in contrast to previous studies, we show that the N-terminal domain of BubR1 is the only domain involved in binding to Cdc20-Mad2 and the APC/C. Within this region, an N-terminal KEN box (KEN1) is essential for these interactions. By contrast, mutation of the second KEN box (KEN2) of BubR1 does not interfere with MCC assembly or APC/C binding. However, both in cells and in vitro, the KEN2 box is required for inhibition of APC/C when activated by Cdc20 (APC/C(Cdc20)). Indeed, we show that this second KEN box promotes SAC function by blocking the recruitment of substrates to the APC/C. Thus, we propose a model in which the BubR1 KEN boxes play two very different roles, the first to promote MCC assembly and the second to block substrate recruitment to APC/C(Cdc20).
Lee,2011 (22184200) Lee K, Rhee K "PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis." J Cell Biol 2011 Dec 27
The microtubule-organizing activity of the centrosome oscillates during the cell cycle, reaching its highest level at mitosis. At the onset of mitosis, the centrosome undergoes maturation, which is characterized by a drastic expansion of the pericentriolar matrix (PCM) and a robust increase in microtubule-organizing activity. It is known that PLK1 is critical for the initiation of centrosome maturation. In this paper, we report that pericentrin (PCNT), a PCM protein, was specifically phosphorylated by PLK1 during mitosis. Phosphoresistant point mutants of PCNT did not recruit centrosomal proteins, such as CEP192, GCP-WD (gamma-complex protein with WD repeats), gamma-tubulin, Aurora A, and PLK1, into the centrosome during mitosis. However, centrosomal recruitment of CEP215 depended on PCNT irrespective of its phosphorylation status. Furthermore, ectopic expression of PLK1-PCNT fusion proteins induced the centrosomal accumulation of CEP192, GCP-WD, and gamma-tubulin even in interphase cells, mimicking centrosome maturation. Based on these results, we propose that PLK1-mediated phosphorylation of PCNT initiates centrosome maturation by organizing the spindle pole-specific PCM lattice.
Rosa-Ferreira,2011 (22172677) Rosa-Ferreira C, Munro S "Arl8 and SKIP act together to link lysosomes to kinesin-1." Dev Cell 2011 Dec 16
Lysosomes move bidirectionally on microtubules, and this motility can be stimulated by overexpression of the small GTPase Arl8. By using affinity chromatography, we find that Arl8-GTP binds to the soluble protein SKIP (SifA and kinesin-interacting protein, aka PLEKHM2). SKIP was originally identified as a target of the Salmonella effector protein SifA and found to bind the light chain of kinesin-1 to activate the motor on the bacteria's replicative vacuole. We show that in uninfected cells both Arl8 and SKIP are required for lysosomes to distribute away from the microtubule-organizing center. We identify two kinesin light chain binding motifs in SKIP that are required for lysosomes to accumulate kinesin-1 and redistribute to the cell periphery. Thus, Arl8 binding to SKIP provides a link from lysosomal membranes to plus-end-directed motility. A splice variant of SKIP that lacks a light chain binding motif does not stimulate movement, suggesting fine-tuning by alternative splicing.
Ferrero,2011 (22163316) Ferrero M, Ferragud J, Orlando L, Valero L, Sanchez del Pino M, Farras R, Font de Mora J "Phosphorylation of AIB1 at mitosis is regulated by CDK1/CYCLIN B." PLoS One 2011 Dec 14
BACKGROUND: Although the AIB1 oncogene has an important role during the early phase of the cell cycle as a coactivator of E2F1, little is known about its function during mitosis. METHODOLOGY/PRINCIPAL FINDINGS: Mitotic cells isolated by nocodazole treatment as well as by shake-off revealed a post-translational modification occurring in AIB1 specifically during mitosis. This modification was sensitive to the treatment with phosphatase, suggesting its modification by phosphorylation. Using specific inhibitors and in vitro kinase assays we demonstrate that AIB1 is phosphorylated on Ser728 and Ser867 by Cdk1/cyclin B at the onset of mitosis and remains phosphorylated until exit from M phase. Differences in the sensitivity to phosphatase inhibitors suggest that PP1 mediates dephosphorylation of AIB1 at the end of mitosis. The phosphorylation of AIB1 during mitosis was not associated with ubiquitylation or degradation, as confirmed by western blotting and flow cytometry analysis. In addition, luciferase reporter assays showed that this phosphorylation did not alter the transcriptional properties of AIB1. Importantly, fluorescence microscopy and sub-cellular fractionation showed that AIB1 phosphorylation correlated with the exclusion from the condensed chromatin, thus preventing access to the promoters of AIB1-dependent genes. Phospho-specific antibodies developed against Ser728 further demonstrated the presence of phosphorylated AIB1 only in mitotic cells where it was localized preferentially in the periphery of the cell. CONCLUSIONS: Collectively, our results describe a new mechanism for the regulation of AIB1 during mitosis, whereby phosphorylation of AIB1 by Cdk1 correlates with the subcellular redistribution of AIB1 from a chromatin-associated state in interphase to a more peripheral localization during mitosis. At the exit of mitosis, AIB1 is dephosphorylated, presumably by PP1. This exclusion from chromatin during mitosis may represent a mechanism for governing the transcriptional activity of AIB1.
Liu,2011 (22155787) Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD "The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes." Sci Signal 2011 Dec 6
The Src homology 2 (SH2) domains are participants in metazoan signal transduction, acting as primary mediators for regulated protein-protein interactions with tyrosine-phosphorylated substrates. Here, we describe the origin and evolution of SH2 domain proteins by means of sequence analysis from 21 eukaryotic organisms from the basal unicellular eukaryotes, where SH2 domains first appeared, through the multicellular animals and increasingly complex metazoans. On the basis of our results, SH2 domains and phosphotyrosine signaling emerged in the early Unikonta, and the numbers of SH2 domains expanded in the choanoflagellate and metazoan lineages with the development of tyrosine kinases, leading to rapid elaboration of phosphotyrosine signaling in early multicellular animals. Our results also indicated that SH2 domains coevolved and the number of the domains expanded alongside protein tyrosine kinases and tyrosine phosphatases, thereby coupling phosphotyrosine signaling to downstream signaling networks. Gene duplication combined with domain gain or loss produced novel SH2-containing proteins that function within phosphotyrosine signaling, which likely have contributed to diversity and complexity in metazoans. We found that intra- and intermolecular interactions within and between SH2 domain proteins increased in prevalence along with organismal complexity and may function to generate more highly connected and robust phosphotyrosine signaling networks.
Guettler,2011 (22153077) Guettler S, LaRose J, Petsalaki E, Gish G, Scotter A, Pawson T, Rottapel R, Sicheri F "Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease." Cell 2011 Dec 9
The poly(ADP-ribose)polymerases Tankyrase 1/2 (TNKS/TNKS2) catalyze the covalent linkage of ADP-ribose polymer chains onto target proteins, regulating their ubiquitylation, stability, and function. Dysregulation of substrate recognition by Tankyrases underlies the human disease cherubism. Tankyrases recruit specific motifs (often called RxxPDG "hexapeptides") in their substrates via an N-terminal region of ankyrin repeats. These ankyrin repeats form five domains termed ankyrin repeat clusters (ARCs), each predicted to bind substrate. Here we report crystal structures of a representative ARC of TNKS2 bound to targeting peptides from six substrates. Using a solution-based peptide library screen, we derive a rule-based consensus for Tankyrase substrates common to four functionally conserved ARCs. This 8-residue consensus allows us to rationalize all known Tankyrase substrates and explains the basis for cherubism-causing mutations in the Tankyrase substrate 3BP2. Structural and sequence information allows us to also predict and validate other Tankyrase targets, including Disc1, Striatin, Fat4, RAD54, BCR, and MERIT40.
Molzan,2012 (22151054) Molzan M, Weyand M, Rose R, Ottmann C "Structural insights of the MLF1/14-3-3 interaction." FEBS J 2012 Jan 26
Myeloid leukaemia factor 1 (MLF1) binds to 14-3-3 adapter proteins by a sequence surrounding Ser34 with the functional consequences of this interaction largely unknown. We present here the high-resolution crystal structure of this binding motif [MLF1(29-42)pSer34] in complex with 14-3-3epsilon and analyse the interaction with isothermal titration calorimetry. Fragment-based ligand discovery employing crystals of the binary 14-3-3epsilon/MLF1(29-42)pSer34 complex was used to identify a molecule that binds to the interface rim of the two proteins, potentially representing the starting point for the development of a small molecule that stabilizes the MLF1/14-3-3 protein-protein interaction. Such a compound might be used as a chemical biology tool to further analyse the 14-3-3/MLF1 interaction without the use of genetic methods. Database Structural data are available in the Protein Data Bank under the accession number(s) 3UAL [14-3-3epsilon/MLF1(29-42)pSer34 complex] and 3UBW [14-3-3epsilon/MLF1(29-42)pSer34/3-pyrrolidinol complex] Structured digital abstract * 14-3-3 epsilon and MLF1 bind by x-ray crystallography (View interaction) * 14-3-3 epsilon and MLF1 bind by isothermal titration calorimetry (View Interaction: 1, 2).
Baek,2012 (22148351) Baek S, Kutchukian PS, Verdine GL, Huber R, Holak TA, Lee KW, Popowicz GM "Structure of the stapled p53 peptide bound to Mdm2." J Am Chem Soc 2012 Jan 12
Mdm2 is a major negative regulator of the tumor suppressor p53 protein, a protein that plays a crucial role in maintaining genome integrity. Inactivation of p53 is the most prevalent defect in human cancers. Inhibitors of the Mdm2-p53 interaction that restore the functional p53 constitute potential nongenotoxic anticancer agents with a novel mode of action. We present here a 2.0 A resolution structure of the Mdm2 protein with a bound stapled p53 peptide. Such peptides, which are conformationally and proteolytically stabilized with all-hydrocarbon staples, are an emerging class of biologics that are capable of disrupting protein-protein interactions and thus have broad therapeutic potential. The structure represents the first crystal structure of an i, i + 7 stapled peptide bound to its target and reveals that rather than acting solely as a passive conformational brace, a staple can intimately interact with the surface of a protein and augment the binding interface.
Namanja,2012 (22147707) Namanja AT, Li YJ, Su Y, Wong S, Lu J, Colson LT, Wu C, Li SS, Chen Y "Insights into high affinity small ubiquitin-like modifier (SUMO) recognition by SUMO-interacting motifs (SIMs) revealed by a combination of NMR and peptide array analysis." J Biol Chem 2012 Jan 30
The small ubiquitin-like modifiers (SUMOs) regulate many essential cellular functions. Only one type of SUMO-interacting motif (SIM) has been identified that can extend the beta-sheet of SUMO as either a parallel or an antiparallel strand. The molecular determinants of the bound orientation and paralogue specificity of a SIM are unclear. To address this question, we have conducted structural studies of SUMO1 in complex with a SUMO1-specific SIM that binds to SUMO1 with high affinity without post-translational modifications using nuclear magnetic resonance methods. In addition, the SIM sequence requirements have been investigated by peptide arrays in comparison with another high affinity SIM that binds in the opposing orientation. We found that antiparallel binding SIMs tolerate more diverse sequences, whereas the parallel binding SIMs prefer the more strict sequences consisting of (I/V)DLT that have a preference in high affinity SUMO2 and -3 binding. Comparison of two high affinity SUMO1-binding SIMs that bind in opposing orientations has revealed common SUMO1-specific interactions needed for high affinity binding. This study has significantly advanced our understanding of the molecular determinants underlining SUMO-SIM recognition.
Moschou,2012 (22121979) Moschou PN, Bozhkov PV "Separases: biochemistry and function." Physiol Plant 2012 Apr 16
Tight regulation of cell cycle is of critical importance for eukaryotic biology and is achieved through a combined action of a large number of highly specialized proteins. Separases are evolutionarily conserved caspase-like proteases playing a crucial role in cell cycle regulation, as they execute sister chromatid separation at metaphase to anaphase transition. In contrast to extensively studied yeast and metazoan separases, very little is known about the role of separases in plant biology. Here we describe the molecular mechanisms of separase-mediated chromatid segregation in yeast and metazoan models, discuss new emerging but less-understood functions of separases and highlight major gaps in our knowledge about plant separases.
Wolting,2011 (22087225) Wolting CD, Griffiths EK, Sarao R, Prevost BC, Wybenga-Groot LE, McGlade CJ "Biochemical and computational analysis of LNX1 interacting proteins." PLoS One 2011
PDZ (Post-synaptic density, 95 kDa, Discs large, Zona Occludens-1) domains are protein interaction domains that bind to the carboxy-terminal amino acids of binding partners, heterodimerize with other PDZ domains, and also bind phosphoinositides. PDZ domain containing proteins are frequently involved in the assembly of multi-protein complexes and clustering of transmembrane proteins. LNX1 (Ligand of Numb, protein X 1) is a RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligase that also includes four PDZ domains suggesting it functions as a scaffold for a multi-protein complex. Here we use a human protein array to identify direct LNX1 PDZ domain binding partners. Screening of 8,000 human proteins with isolated PDZ domains identified 53 potential LNX1 binding partners. We combined this set with LNX1 interacting proteins identified by other methods to assemble a list of 220 LNX1 interacting proteins. Bioinformatic analysis of this protein list was used to select interactions of interest for future studies. Using this approach we identify and confirm six novel LNX1 binding partners: KCNA4, PAK6, PLEKHG5, PKC-alpha1, TYK2 and PBK, and suggest that LNX1 functions as a signalling scaffold.
Barford,2011 (22084387) Barford D "Structural insights into anaphase-promoting complex function and mechanism." Philos Trans R Soc Lond B Biol Sci 2011 Nov 15
The anaphase-promoting complex or cyclosome (APC/C) controls sister chromatid segregation and the exit from mitosis by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. This unusually large E3 RING-cullin ubiquitin ligase is assembled from 13 different proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D box and KEN box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. Recent structural and biochemical studies of the APC/C are beginning to reveal an understanding of the roles of individual APC/C subunits and co-activators and how they mutually interact to mediate APC/C functions. This review focuses on the findings showing how information on the structural organization of the APC/C provides insights into the role of co-activators and core APC/C subunits in mediating substrate recognition. Mechanisms of regulating and modulating substrate recognition are discussed in the context of controlling the binding of the co-activator to the APC/C, and the accessibility and conformation of the co-activator when bound to the APC/C.
Mizushima,2011 (22078875) Mizushima N, Komatsu M "Autophagy: renovation of cells and tissues." Cell 2011 Nov 14
Autophagy is the major intracellular degradation system by which cytoplasmic materials are delivered to and degraded in the lysosome. However, the purpose of autophagy is not the simple elimination of materials, but instead, autophagy serves as a dynamic recycling system that produces new building blocks and energy for cellular renovation and homeostasis. Here we provide a multidisciplinary review of our current understanding of autophagy's role in metabolic adaptation, intracellular quality control, and renovation during development and differentiation. We also explore how recent mouse models in combination with advances in human genetics are providing key insights into how the impairment or activation of autophagy contributes to pathogenesis of diverse diseases, from neurodegenerative diseases such as Parkinson disease to inflammatory disorders such as Crohn disease.
Bohdanowicz,2012 (22072788) Bohdanowicz M, Balkin DM, De Camilli P, Grinstein S "Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling." Mol Biol Cell 2012 Jan 02
Sealing of phagosomes is accompanied by the disappearance of phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2)) from their cytoplasmic leaflet. Elimination of PtdIns(4,5)P(2), which is required for actin remodeling during phagosome formation, has been attributed to hydrolysis by phospholipase C and phosphorylation by phosphatidylinositol 3-kinase. We found that two inositol 5-phosphatases, OCRL and Inpp5B, become associated with nascent phagosomes. Both phosphatases, which are Rab5 effectors, associate with the adaptor protein APPL1, which is recruited to the phagosomes by active Rab5. Knockdown of APPL1 or inhibition of Rab5 impairs association of OCRL and Inpp5B with phagosomes and prolongs the presence of PtdIns(4,5)P(2) and actin on their membranes. Even though APPL1 can serve as an anchor for Akt, its depletion accentuated the activation of the kinase, likely by increasing the amount of PtdIns(4,5)P(2) available to generate phosphatidylinositol (3,4,5)-trisphosphate. Thus, inositol 5-phosphatases are important contributors to the phosphoinositide remodeling and signaling that are pivotal for phagocytosis.
Francis,2011 (22057126) Francis DM, Rozycki B, Koveal D, Hummer G, Page R, Peti W "Structural basis of p38alpha regulation by hematopoietic tyrosine phosphatase." Nat Chem Biol 2011 Nov 17
MAP kinases regulate essential cellular events, including cell growth, differentiation and inflammation. The solution structure of a complete MAPK-MAPK-regulatory protein complex, p38alpha-HePTP, was determined, enabling a comprehensive investigation of the molecular basis of specificity and fidelity in MAPK regulation. Structure determination was achieved by combining NMR spectroscopy and small-angle X-ray scattering data with a new ensemble calculation-refinement procedure. We identified 25 residues outside of the HePTP kinase interaction motif necessary for p38alpha recognition. The complex adopts an extended conformation in solution and rarely samples the conformation necessary for kinase deactivation. Complex formation also does not affect the N-terminal lobe, the activation loop of p38alpha or the catalytic domain of HePTP. Together, these results show how the downstream tyrosine phosphatase HePTP regulates p38alpha and provide for fundamentally new insights into MAPK regulation and specificity.
Moniz,2011 (22040655) Moniz L, Dutt P, Haider N, Stambolic V "Nek family of kinases in cell cycle, checkpoint control and cancer." Cell Div 2011 Nov 23
Early studies in lower Eukaryotes have defined a role for the members of the NimA related kinase (Nek) family of protein kinases in cell cycle control. Expansion of the Nek family throughout evolution has been accompanied by their broader involvement in checkpoint regulation and cilia biology. Moreover, mutations of Nek family members have been identified as drivers behind the development of ciliopathies and cancer. Recent advances in studying the physiological roles of Nek family members utilizing mouse genetics and RNAi-mediated knockdown are revealing intricate associations of Nek family members with fundamental biological processes. Here, we aim to provide a comprehensive account of our understanding of Nek kinase biology and their involvement in cell cycle, checkpoint control and cancer.
Collart,2011 (22027279) Collart MA, Panasenko OO "The Ccr4--not complex." Gene 2011 Dec 26
The Ccr4-Not complex is a unique, essential and conserved multi-subunit complex that acts at the level of many different cellular functions to regulate gene expression. Two enzymatic activities, namely ubiquitination and deadenylation, are provided by different subunits of the complex. However, studies over the last decade have demonstrated a tantalizing multi-functionality of this complex that extends well beyond its identified enzymatic activities. Most of our initial knowledge about the Ccr4-Not complex stemmed from studies in yeast, but an increasing number of reports on this complex in other species are emerging. In this review we will discuss the structure and composition of the complex, and describe the different cellular functions with which the Ccr4-Not complex has been connected in different organisms. Finally, based upon our current state of knowledge, we will propose a model to explain how one complex can provide such multi-functionality. This model suggests that the Ccr4-Not complex might function as a "chaperone platform".
Licausi,2011 (22020282) Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT "Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization." Nature 2011 Nov 18
The majority of eukaryotic organisms rely on molecular oxygen for respiratory energy production. When the supply of oxygen is compromised, a variety of acclimation responses are activated to reduce the detrimental effects of energy depletion. Various oxygen-sensing mechanisms have been described that are thought to trigger these responses, but they each seem to be kingdom specific and no sensing mechanism has been identified in plants until now. Here we show that one branch of the ubiquitin-dependent N-end rule pathway for protein degradation, which is active in both mammals and plants, functions as an oxygen-sensing mechanism in Arabidopsis thaliana. We identified a conserved amino-terminal amino acid sequence of the ethylene response factor (ERF)-transcription factor RAP2.12 to be dedicated to an oxygen-dependent sequence of post-translational modifications, which ultimately lead to degradation of RAP2.12 under aerobic conditions. When the oxygen concentration is low-as during flooding-RAP2.12 is released from the plasma membrane and accumulates in the nucleus to activate gene expression for hypoxia acclimation. Our discovery of an oxygen-sensing mechanism opens up new possibilities for improving flooding tolerance in crops.
Gibbs,2011 (22020279) Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ "Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants." Nature 2011 Nov 18
Plants and animals are obligate aerobes, requiring oxygen for mitochondrial respiration and energy production. In plants, an unanticipated decline in oxygen availability (hypoxia), as caused by roots becoming waterlogged or foliage submergence, triggers changes in gene transcription and messenger RNA translation that promote anaerobic metabolism and thus sustain substrate-level ATP production. In contrast to animals, oxygen sensing has not been ascribed to a mechanism of gene regulation in response to oxygen deprivation in plants. Here we show that the N-end rule pathway of targeted proteolysis acts as a homeostatic sensor of severe low oxygen levels in Arabidopsis, through its regulation of key hypoxia-response transcription factors. We found that plants lacking components of the N-end rule pathway constitutively express core hypoxia-response genes and are more tolerant of hypoxic stress. We identify the hypoxia-associated ethylene response factor group VII transcription factors of Arabidopsis as substrates of this pathway. Regulation of these proteins by the N-end rule pathway occurs through a characteristic conserved motif at the amino terminus initiating with Met-Cys. Enhanced stability of one of these proteins, HRE2, under low oxygen conditions improves hypoxia survival and reveals a molecular mechanism for oxygen sensing in plants via the evolutionarily conserved N-end rule pathway. SUB1A-1, a major determinant of submergence tolerance in rice, was shown not to be a substrate for the N-end rule pathway despite containing the N-terminal motif, indicating that it is uncoupled from N-end rule pathway regulation, and that enhanced stability may relate to the superior tolerance of Sub1 rice varieties to multiple abiotic stresses.
Sriram,2011 (22016057) Sriram SM, Kim BY, Kwon YT "The N-end rule pathway: emerging functions and molecular principles of substrate recognition." Nat Rev Mol Cell Biol 2011 Oct 21
The N-end rule defines the protein-destabilizing activity of a given amino-terminal residue and its post-translational modification. Since its discovery 25 years ago, the pathway involved in the N-end rule has been thought to target only a limited set of specific substrates of the ubiquitin-proteasome system. Recent studies have provided insights into the components, substrates, functions and structural basis of substrate recognition. The N-end rule pathway is now emerging as a major cellular proteolytic system, in which the majority of proteins are born with or acquire specific N-terminal degradation determinants through protein-specific or global post-translational modifications.
Chen,2011 (22002310) Chen HZ, Li L, Wang WJ, Du XD, Wen Q, He JP, Zhao BX, Li GD, Zhou W, Xia Y, Yang QY, Hew CL, Liou YC, Wu Q "Prolyl isomerase Pin1 stabilizes and activates orphan nuclear receptor TR3 to promote mitogenesis." Oncogene 2011 Oct 17
Pin1 regulates a subset of phosphoproteins by isomerizing phospho-Ser/Thr-Pro motifs via a 'post-phosphorylation' mechanism. Here, we characterize TR3 as a novel Pin1 substrate, and the mitogenic function of TR3 depends on Pin1-induced isomerization. There are at least three phospho-Ser-Pro motifs on TR3 that bind to Pin1. The Ser95-Pro motif of TR3 is the key site through which Pin1 enhances TR3 stability by retarding its degradation. Pin1 can also catalyze TR3 through phospho-Ser431-Pro motif, which is phosphorylated by extracellular signal-regulated kinase 2 (ERK2), resulting in enhanced TR3 transactivation. Furthermore, Pin1 not only facilitates TR3 targeting to the promoter of cyclin D2, a novel downstream target of TR3, but also promotes TR3 to recruit p300, thereby inducing cell proliferation. Importantly, we found that Pin1 is indispensable for TR3 to promote tumor growth both in vitro and in vivo. Our study thus suggests that Pin1 has an important role in cell proliferation by isomerizing TR3.Oncogene advance online publication, 17 October 2011; doi:10.1038/onc.2011.463.
Das,2011 (22001015) Das S, Raychaudhuri M, Sen U, Mukhopadhyay D "Functional implications of the conformational switch in AICD peptide upon binding to Grb2-SH2 domain." J Mol Biol 2011 Nov 25
It has been hypothesized previously that synergistic effect of both amyloid precursor protein intracellular C-terminal domain (AICD) and Abeta aggregation could contribute to Alzheimer's disease pathogenesis. Structural studies of AICD have found no stable globular fold over a broad range of pH. Present work is based on the premises that a conformational switch involving the flipping of C-terminal helix of AICD would be essential for effective binding with the Src homology 2 (SH2) domain of growth factor receptor binding protein-2 (Grb2) and subsequent initiation of Grb2-mediated endo-lysosomal pathway. High-resolution crystal structures of Grb2-SH2 domain bound to AICD peptides reveal a unique mode of binding where the peptides assume a noncanonical conformation that is unlike other structures of AICD peptides bound to protein-tyrosine-binding domains or that of its free state; rather, a flipping of the C-terminal helix of AICD is evident. The involvement of different AICD residues in Grb2-SH2 interaction is further elucidated through fluorescence-based assays. Our results reveal the significance of a specific interaction of the two molecules to optimize the rapid transport of AICD inside endosomal vesicles presumably to reduce the cytotoxic load.
Ahn,2011 (22000856) Ahn VE, Chu ML, Choi HJ, Tran D, Abo A, Weis WI "Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6." Dev Cell 2011 Nov 14
LDL receptor-related proteins 5 and 6 (LRP5/6) are coreceptors for Wnt growth factors, and also bind Dkk proteins, secreted inhibitors of Wnt signaling. The LRP5/6 ectodomain contains four beta-propeller/EGF-like domain repeats. The first two repeats, LRP6(1-2), bind to several Wnt variants, whereas LRP6(3-4) binds other Wnts. We present the crystal structure of the Dkk1 C-terminal domain bound to LRP6(3-4), and show that the Dkk1 N-terminal domain binds to LRP6(1-2), demonstrating that a single Dkk1 molecule can bind to both portions of the LRP6 ectodomain and thereby inhibit different Wnts. Small-angle X-ray scattering analysis of LRP6(1-4) bound to a noninhibitory antibody fragment or to full-length Dkk1 shows that in both cases the ectodomain adopts a curved conformation that places the first three repeats at a similar height relative to the membrane. Thus, Wnts bound to either portion of the LRP6 ectodomain likely bear a similar spatial relationship to Frizzled coreceptors.
Tan,2011 (21998309) Tan BZ, Jiang F, Tan MY, Yu D, Huang H, Shen Y, Soong TW "Functional characterization of alternative splicing in the C terminus of L-type CaV1.3 channels." J Biol Chem 2011 Dec 05
Ca(V)1.3 channels are unique among the high voltage-activated Ca(2+) channel family because they activate at the most negative potentials and display very rapid calcium-dependent inactivation. Both properties are of crucial importance in neurons of the suprachiasmatic nucleus and substantia nigra, where the influx of Ca(2+) ions at subthreshold membrane voltages supports pacemaking function. Previously, alternative splicing in the Ca(V)1.3 C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), resulting in a pronounced activation at more negative voltages and faster inactivation in the latter. It was further shown that the C-terminal modulator in the Ca(V)1.3(42) isoforms modulates calmodulin binding to the IQ domain. Using splice variant-specific antibodies, we determined that protein localization of both splice variants in different brain regions were similar. Using the transcript-scanning method, we further identified alternative splicing at four loci in the C terminus of Ca(V)1.3 channels. Alternative splicing of exon 41 removes the IQ motif, resulting in a truncated Ca(V)1.3 protein with diminished inactivation. Splicing of exon 43 causes a frameshift and exhibits a robust inactivation of similar intensity to Ca(V)1.3(42A). Alternative splicing of exons 44 and 48 are in-frame, altering interaction of the distal modulator with the IQ domain and tapering inactivation slightly. Thus, alternative splicing in the C terminus of Ca(V)1.3 channels modulates its electrophysiological properties, which could in turn alter neuronal firing properties and functions.
Cheng,2011 (21984209) Cheng Z, Biechele T, Wei Z, Morrone S, Moon RT, Wang L, Xu W "Crystal structures of the extracellular domain of LRP6 and its complex with DKK1." Nat Struct Mol Biol 2011 Nov 07
Low-density-lipoprotein (LDL) receptor-related proteins 5 and 6 (LRP5/6) are Wnt co-receptors essential for Wnt/beta-catenin signaling. Dickkopf 1 (DKK1) inhibits Wnt signaling by interacting with the extracellular domains of LRP5/6 and is a drug target for multiple diseases. Here we present the crystal structures of a human LRP6-E3E4-DKK1 complex and the first and second halves of human LRP6's four propeller-epidermal growth factor (EGF) pairs (LRP6-E1E2 and LRP6-E3E4). Combined with EM analysis, these data demonstrate that LRP6-E1E2 and LRP6-E3E4 form two rigid structural blocks, with a short intervening hinge that restrains their relative orientation. The C-terminal domain of DKK1 (DKK1c) interacts with the top surface of the LRP6-E3 YWTD propeller and given their structural similarity, probably also that of the LRP6-E1 propeller, through conserved hydrophobic patches buttressed by a network of salt bridges and hydrogen bonds. Our work provides key insights for understanding LRP5/6 structure and the interaction of LRP5/6 with DKK, as well as for drug discovery.
Ito,2011 (21976065) Ito K, Takahashi A, Morita M, Suzuki T, Yamamoto T "The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability." Protein Cell 2011 Oct 06
The human CCR4-NOT deadenylase complex consists of at least nine enzymatic and non-enzymatic subunits. Accumulating evidence suggests that the non-enzymatic subunits are involved in the regulation of mRNA deadenylation, although their precise roles remain to be established. In this study, we addressed the function of the CNOT1 subunit by depleting its expression in HeLa cells. Flow cytometric analysis revealed that the sub G(1) fraction was increased in CNOT1-depleted cells. Virtually, the same level of the sub G1 fraction was seen when cells were treated with a mixture of siRNAs targeted against all enzymatic subunits, suggesting that CNOT1 depletion induces apoptosis by destroying the CCR4-NOT-associated deadenylase activity. Further analysis revealed that CNOT1 depletion leads to a reduction in the amount of other CCR4-NOT subunits. Importantly, the specific activity of the CNOT6L immunoprecipitates-associated deadenylase from CNOT1-depleted cells was less than that from control cells. The formation of P-bodies, where mRNA decay is reported to take place, was largely suppressed in CNOT1-depleted cells. Therefore, CNOT1 has an important role in exhibiting enzymatic activity of the CCR4-NOT complex, and thus is critical in control of mRNA deadenylation and mRNA decay. We further showed that CNOT1 depletion enhanced CHOP mRNA levels and activated caspase-4, which is associated with endoplasmic reticulum ER stress-induced apoptosis. Taken together, CNOT1 depletion structurally and functionally deteriorates the CCR4-NOTcomplex and induces stabilization of mRNAs, which results in the increment of translation causing ER stress-mediated apoptosis. We conclude that CNOT1 contributes to cell viability by securing the activity of the CCR4-NOT deadenylase.
Vicinanza,2011 (21971085) Vicinanza M, Di Campli A, Polishchuk E, Santoro M, Di Tullio G, Godi A, Levtchenko E, De Leo MG, Polishchuk R, Sandoval L, Marzolo MP, De Matteis MA "OCRL controls trafficking through early endosomes via PtdIns4,5P-dependent regulation of endosomal actin." EMBO J 2011 Dec 14
Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P(2)) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P(2) in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P(2) and F-actin at the EEs is essential for exporting cargoes that transit this compartment.
Pan,2011 (21965684) Pan L, Chen J, Yu J, Yu H, Zhang M "The structure of the PDZ3-SH3-GuK tandem of ZO-1 protein suggests a supramodular organization of the membrane-associated guanylate kinase (MAGUK) family scaffold protein core." J Biol Chem 2011 Nov 18
Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tethering membrane receptors, adhesion molecules, and macromolecular signaling complexes for tissue developments, cell-cell communications, and intracellular signal transductions. The defining feature of the MAGUK family scaffolds is that each member contains a conserved core consisting of a PSD-95/Dlg/ZO-1 (PDZ) domain, an Src homology 3 (SH3) domain, and a catalytically inactive guanylate kinase (GuK) domain arranged in tandem, although the structural features and functional implications of the PDZ-SH3-GuK tandem arrangement are unclear. The structure of the ZO-1 PDZ3-SH3-GuK tandem solved in this study reveals that the PDZ domain directly interacts with the SH3-GuK module, forming a structural supramodule with distinct target binding properties with respect to the isolated domains. Structure-based sequence analysis suggests that the PDZ-SH3-GuK tandems of other members of the MAGUK family also form supramodules.
Cong,2011 (21965678) Cong L, Pakala SB, Ohshiro K, Li DQ, Kumar R "SUMOylation and SUMO-interacting motif (SIM) of metastasis tumor antigen 1 (MTA1) synergistically regulate its transcriptional repressor function." J Biol Chem 2011 Dec 19
Metastasis tumor antigen 1 (MTA1), a component of the Mi-2.nucleosome remodeling and deacetylase complex, plays a crucial role in gene transcription, but the mechanism involved remains largely unknown. Here, we report that MTA1 is a substrate for small ubiquitin-related modifier 2/3 (SUMO2/3) in vivo. Protein inhibitor of activated STAT (PIAS) proteins enhance SUMOylation of MTA1 and may participate in paralog-selective SUMOylation, whereas sentrin/SUMO-specific protease 1 (SENP1) and 2 may act as deSUMOylation enzymes for MTA1. Moreover, MTA1 contains a functional SUMO-interacting motif (SIM) at its C terminus, and SIM is required for the efficient SUMOylation of MTA1. SUMO conjugation on Lys-509, which is located within the SUMO consensus site, together with SIM synergistically regulates the co-repressor activity of MTA1 on PS2 transcription, probably by recruiting HDAC2 onto the PS2 promoter. Interestingly, MTA1 may up-regulate the expression of SUMO2 via interaction with RNA polymerase II and SP1 at the SUMO2 promoter. These findings not only provide novel mechanistic insights into the regulation of the transcriptional repressor function of MTA1 by SUMOylation and SIM but also uncover a potential function of MTA1 in modulating the SUMOylation pathway.
Pauwels,2011 (21963667) Pauwels L, Goossens A "The JAZ proteins: a crucial interface in the jasmonate signaling cascade." Plant Cell 2011 Oct 28
Jasmonates are phytohormones that regulate many aspects of plant growth, development, and defense. Within the signaling cascades that are triggered by jasmonates, the JASMONATE-ZIM DOMAIN (JAZ) repressor proteins play a central role. The endogenous bioactive JA-Ile conjugate mediates the binding of JAZ proteins to the F-box protein CORONATINE INSENSITIVE1 (COI1), part of the Skp1/Cullin/F-box SCF(COI1) ubiquitin E3 ligase complex. Upon the subsequent destruction of the JAZ proteins by the 26S proteasome, multiple transcription factors are relieved from JAZ-mediated repression, allowing them to activate their respective downstream responses. However, many questions remain regarding the targets, specificity, function, and regulation of the different JAZ proteins. Here, we review recent studies on the model plant Arabidopsis thaliana that provided essential and novel insights. JAZ proteins have been demonstrated to interact with a broad array of transcription factors that each control specific downstream processes. Recruitment of the corepressor TOPLESS unveiled a mechanism for JAZ-mediated gene repression. Finally, the presence of JAZ proteins was also found to be regulated by alternative splicing and interactions with proteins from other hormonal signaling pathways. Overall, these contemporary findings underscore the value of protein-protein interaction studies to acquire fundamental insight into molecular signaling pathways.
Subbaiah,2011 (21954943) Subbaiah VK, Kranjec C, Thomas M, Banks L "PDZ domains: the building blocks regulating tumorigenesis." Biochem J 2011 Oct 15
Over 250 PDZ (PSD95/Dlg/ZO-1) domain-containing proteins have been described in the human proteome. As many of these possess multiple PDZ domains, the potential combinations of associations with proteins that possess PBMs (PDZ-binding motifs) are vast. However, PDZ domain recognition is a highly specific process, and much less promiscuous than originally thought. Furthermore, a large number of PDZ domain-containing proteins have been linked directly to the control of processes whose loss, or inappropriate activation, contribute to the development of human malignancies. These regulate processes as diverse as cytoskeletal organization, cell polarity, cell proliferation and many signal transduction pathways. In the present review, we discuss how PBM-PDZ recognition and imbalances therein can perturb cellular homoeostasis and ultimately contribute to malignant progression.
Zhang,2012 (21952048) Zhang K, Rodriguez-Aznar E, Yabuta N, Owen RJ, Mingot JM, Nojima H, Nieto MA, Longmore GD "Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation." EMBO J 2012 Jan 04
Snail1 is a central regulator of epithelial cell adhesion and movement in epithelial-to-mesenchymal transitions (EMTs) during embryo development; a process reactivated during cancer metastasis. While induction of Snail1 transcription precedes EMT induction, post-translational regulation of Snail1 is also critical for determining Snail1's protein level, subcellular localization, and capacity to induce EMT. To identify novel post-translational regulators of Snail1, we developed a live cell, bioluminescence-based screen. From a human kinome RNAi screen, we have identified Lats2 kinase as a novel regulator of Snail1 protein level, subcellular localization, and thus, activity. We show that Lats2 interacts with Snail1 and directly phosphorylates Snail1 at residue T203. This occurs in the nucleus and serves to retain Snail1 in the nucleus thereby enhancing its stability. Lats2 was found to positively influence cellular EMT and tumour cell invasion, in a Snail1-dependent manner. Indeed during TGFbeta-induced EMT Lats2 is activated and Snail1 phosphorylated at T203. Analysis in mouse and zebrafish embryo development confirms that Lats2 acts as a positive modulator of Snail1 protein level and potentiates its in vivo EMT activity.
Bhaduri,2011 (21945277) Bhaduri S, Pryciak PM "Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes." Curr Biol 2011 Oct 11
BACKGROUND: The eukaryotic cell cycle begins with a burst of cyclin-dependent kinase (Cdk) phosphorylation. In budding yeast, several Cdk substrates are preferentially phosphorylated at the G1/S transition rather than later in the cell cycle when Cdk activity levels are high. These early Cdk substrates include signaling proteins in the pheromone response pathway. Two such proteins, Ste5 and Ste20, are phosphorylated only when Cdk is associated with the G1/S cyclins Cln1 and Cln2 and not G1, S, or M cyclins. The basis of this cyclin specificity is unknown. RESULTS: Here we show that Ste5 and Ste20 have recognition sequences, or "docking" sites, for the G1/S cyclins. These docking sites, which are distinct from Clb5/cyclin A-binding "RXL" motifs, bind preferentially to Cln2. They strongly enhance Cln2-driven phosphorylation of each substrate in vivo and function largely independent of position and distance to the Cdk sites. We exploited this functional independence to rewire a Cdk regulatory circuit in a way that changes the target of Cdk inhibition in the pheromone response pathway. Furthermore, we uncover functionally active Cln2 docking motifs in several other Cdk substrates. The docking motifs drive cyclin-specific phosphorylation, and the cyclin preference can be switched by using a distinct motif. CONCLUSIONS: Our findings indicate that some Cdk substrates are intrinsically capable of being phosphorylated by several different cyclin-Cdk forms, but they are inefficiently phosphorylated in vivo without a cyclin-specific docking site. Docking interactions may play a prevalent but previously unappreciated role in driving phosphorylation of select Cdk substrates preferentially at the G1/S transition.
Bourhis,2011 (21944579) Bourhis E, Wang W, Tam C, Hwang J, Zhang Y, Spittler D, Huang OW, Gong Y, Estevez A, Zilberleyb I, Rouge L, Chiu C, Wu Y, Costa M, Hannoush RN, Franke Y, Cochran AG "Wnt antagonists bind through a short peptide to the first beta-propeller domain of LRP5/6." Structure 2011 Oct 17
The Wnt pathway inhibitors DKK1 and sclerostin (SOST) are important therapeutic targets in diseases involving bone loss or damage. It has been appreciated that Wnt coreceptors LRP5/6 are also important, as human missense mutations that result in bone overgrowth (bone mineral density, or BMD, mutations) cluster to the E1 propeller domain of LRP5. Here, we report a crystal structure of LRP6 E1 bound to an antibody, revealing that the E1 domain is a peptide recognition module. Remarkably, the consensus E1 binding sequence is a close match to a conserved tripeptide motif present in all Wnt inhibitors that bind LRP5/6. We show that this motif is important for DKK1 and SOST binding to LRP6 and for inhibitory function, providing a detailed structural explanation for the effect of the BMD mutations.
Scott,2011 (21940857) Scott DC, Monda JK, Bennett EJ, Harper JW, Schulman BA "N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex." Science 2011 Nov 04
Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.
Obsil,2011 (21920446) Obsil T, Obsilova V "Structural basis of 14-3-3 protein functions." Semin Cell Dev Biol 2011 Nov 02
The 14-3-3 proteins, a family of conserved regulatory molecules, participate in a wide range of cellular processes through binding interactions with hundreds of structurally and functionally diverse proteins. Several distinct mechanisms of the 14-3-3 protein function were described, including conformational modulation of the bound protein, masking of its sequence-specific or structural features, and scaffolding that facilitates interaction between two simultaneously bound proteins. Details of these functional modes, especially from the structural point of view, still remain mostly elusive. This review gives an overview of the current knowledge concerning the structure of 14-3-3 proteins and their complexes as well as the insights it provides into the mechanisms of their functions. We discuss structural basis of target recognition by 14-3-3 proteins, common structural features of their complexes and known mechanisms of 14-3-3 protein-dependent regulations.
Dodding,2011 (21915095) Dodding MP, Mitter R, Humphries AC, Way M "A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome." EMBO J 2011 Dec 22
Transport of cargoes by kinesin-1 is essential for many cellular processes. Nevertheless, the number of proteins known to recruit kinesin-1 via its cargo binding light chain (KLC) is still quite small. We also know relatively little about the molecular features that define kinesin-1 binding. We now show that a bipartite tryptophan-based kinesin-1 binding motif, originally identified in Calsyntenin is present in A36, a vaccinia integral membrane protein. This bipartite motif in A36 is required for kinesin-1-dependent transport of the virus to the cell periphery. Bioinformatic analysis reveals that related bipartite tryptophan-based motifs are present in over 450 human proteins. Using vaccinia as a surrogate cargo, we show that regions of proteins containing this motif can function to recruit KLC and promote virus transport in the absence of A36. These proteins interact with the kinesin light chain outside the context of infection and have distinct preferences for KLC1 and KLC2. Our observations demonstrate that KLC binding can be conferred by a common set of features that are found in a wide range of proteins associated with diverse cellular functions and human diseases.
Davey,2011 (21909575) Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ "Attributes of short linear motifs." Mol Biosyst 2011 Dec 02
Traditionally, protein-protein interactions were thought to be mediated by large, structured domains. However, it has become clear that the interactome comprises a wide range of binding interfaces with varying degrees of flexibility, ranging from rigid globular domains to disordered regions that natively lack structure. Enrichment for disorder in highly connected hub proteins and its correlation with organism complexity hint at the functional importance of disordered regions. Nevertheless, they have not yet been extensively characterised. Shifting the attention from globular domains to disordered regions of the proteome might bring us closer to elucidating the dense and complex connectivity of the interactome. An important class of disordered interfaces are the compact mono-partite, short linear motifs (SLiMs, or eukaryotic linear motifs (ELMs)). They are evolutionarily plastic and interact with relatively low affinity due to the limited number of residues that make direct contact with the binding partner. These features confer to SLiMs the ability to evolve convergently and mediate transient interactions, which is imperative to network evolution and to maintain robust cell signalling, respectively. The ability to discriminate biologically relevant SLiMs by means of different attributes will improve our understanding of the complexity of the interactome and aid development of bioinformatics tools for motif discovery. In this paper, the curated instances currently available in the Eukaryotic Linear Motif (ELM) database are analysed to provide a clear overview of the defining attributes of SLiMs. These analyses suggest that functional SLiMs have higher levels of conservation than their surrounding residues, frequently evolve convergently, preferentially occur in disordered regions and often form a secondary structure when bound to their interaction partner. These results advocate searching for small groupings of residues in disordered regions with higher relative conservation and a propensity to form the secondary structure. Finally, the most interesting conclusions are examined in regard to their functional consequences.
Chandran,2011 (21900244) Chandran S, Li H, Dong W, Krasinska K, Adams C, Alexandrova L, Chien A, Hallows KR, Bhalla V "Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites." J Biol Chem 2011 Oct 24
Regulation of epithelial Na(+) channel (ENaC)-mediated transport in the distal nephron is a critical determinant of blood pressure in humans. Aldosterone via serum and glucocorticoid kinase 1 (SGK1) stimulates ENaC by phosphorylation of the E3 ubiquitin ligase Nedd4-2, which induces interaction with 14-3-3 proteins. However, the mechanisms of SGK1- and 14-3-3-mediated regulation of Nedd4-2 are unclear. There are three canonical SGK1 target sites on Nedd4-2 that overlap phosphorylation-dependent 14-3-3 interaction motifs. Two of these are termed "minor," and one is termed "major," based on weak or strong binding to 14-3-3 proteins, respectively. By mass spectrometry, we found that aldosterone significantly stimulates phosphorylation of a minor, relative to the major, 14-3-3 binding site on Nedd4-2. Phosphorylation-deficient minor site Nedd4-2 mutants bound less 14-3-3 than did wild-type (WT) Nedd4-2, and minor site Nedd4-2 mutations were sufficient to inhibit SGK1 stimulation of ENaC cell surface expression. As measured by pulse-chase and cycloheximide chase assays, a major binding site Nedd4-2 mutant had a shorter cellular half-life than WT Nedd4-2, but this property was not dependent on binding to 14-3-3. Additionally, a dimerization-deficient 14-3-3epsilon mutant failed to bind Nedd4-2. We conclude that whereas phosphorylation at the Nedd4-2 major site is important for interaction with 14-3-3 dimers, minor site phosphorylation by SGK1 may be the relevant molecular switch that stabilizes Nedd4-2 interaction with 14-3-3 and thus promotes ENaC cell surface expression. We also propose that major site phosphorylation promotes cellular Nedd4-2 protein stability, which potentially represents a novel form of regulation for turnover of E3 ubiquitin ligases.
de Groot,2011 (21893288) de Groot JC, Schluter K, Carius Y, Quedenau C, Vingadassalom D, Faix J, Weiss SM, Reichelt J, Standfuss-Gabisch C, Lesser CF, Leong JM, Heinz DW, Bussow K, Stradal TE "Structural basis for complex formation between human IRSp53 and the translocated intimin receptor Tir of enterohemorrhagic E. coli." Structure 2011 Sep 7
Actin assembly beneath enterohemorrhagic E. coli (EHEC) attached to its host cell is triggered by the intracellular interaction of its translocated effector proteins Tir and EspF(U) with human IRSp53 family proteins and N-WASP. Here, we report the structure of the N-terminal I-BAR domain of IRSp53 in complex with a Tir-derived peptide, in which the homodimeric I-BAR domain binds two Tir molecules aligned in parallel. This arrangement provides a protein scaffold linking the bacterium to the host cell's actin polymerization machinery. The structure uncovers a specific peptide-binding site on the I-BAR surface, conserved between IRSp53 and IRTKS. The Tir Asn-Pro-Tyr (NPY) motif, essential for pedestal formation, is specifically recognized by this binding site. The site was confirmed by mutagenesis and in vivo-binding assays. It is possible that IRSp53 utilizes the NPY-binding site for additional interactions with as yet unknown partners within the host cell.
Hamel,2011 (21873571) Hamel LP, Benchabane M, Nicole MC, Major IT, Morency MJ, Pelletier G, Beaudoin N, Sheen J, Seguin A "Stress-responsive mitogen-activated protein kinases interact with the EAR motif of a poplar zinc finger protein and mediate its degradation through the 26S proteasome." Plant Physiol 2011 Nov 04
Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.
Safari,2011 (21873224) Safari F, Murata-Kamiya N, Saito Y, Hatakeyama M "Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors." Proc Natl Acad Sci U S A 2011 Sep 07
Several pathogenic bacteria have adopted effector proteins that, upon delivery into mammalian cells, undergo tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) or EPIYA-like sequence motif by host kinases such as Src family kinases (SFKs). This EPIYA phosphorylation triggers complex formation of bacterial effectors with SH2 domain-containing proteins that results in perturbation of host cell signaling and subsequent pathogenesis. Although the presence of such an anomalous protein interaction suggests the existence of a mammalian EPIYA-containing protein whose function is mimicked or subverted by bacterial EPIYA effectors, no molecule that uses the EPIYA motif for biological function has so far been reported in mammals. Here we show that mammalian Pragmin/SgK223 undergoes tyrosine phosphorylation at the EPIYA motif by SFKs and thereby acquires the ability to interact with the SH2 domain of the C-terminal Src kinase (Csk), a negative regulator of SFKs. The Pragmin-Csk interaction prevents translocalization of Csk from the cytoplasm to the membrane and subsequent inactivation of membrane-associated SFKs. As a result, SFK activity is sustained in cells where Pragmin is phosphorylated at the EPIYA motif. Because EPIYA phosphorylation of Pragmin is mediated by SFKs, cytoplasmic sequestration of Csk by Pragmin establishes a positive feedback regulation of SFK activation. Remarkably, the Helicobacter pylori EPIYA effector CagA binds to the Csk SH2 domain in place of Pragmin and enforces membrane recruitment of Csk and subsequent inhibition of SFKs. This work identifies Pragmin as a mammalian EPIYA effector and suggests that bacterial EPIYA effectors target Pragmin to subvert SFKs for successful infection.
Shpilka,2011 (21867568) Shpilka T, Weidberg H, Pietrokovski S, Elazar Z "Atg8: an autophagy-related ubiquitin-like protein family." Genome Biol 2011 Nov 04
Autophagy-related (Atg) proteins are eukaryotic factors participating in various stages of the autophagic process. Thus far 34 Atgs have been identified in yeast, including the key autophagic protein Atg8. The Atg8 gene family encodes ubiquitin-like proteins that share a similar structure consisting of two amino-terminal alpha helices and a ubiquitin-like core. Atg8 family members are expressed in various tissues, where they participate in multiple cellular processes, such as intracellular membrane trafficking and autophagy. Their role in autophagy has been intensively studied. Atg8 proteins undergo a unique ubiquitin-like conjugation to phosphatidylethanolamine on the autophagic membrane, a process essential for autophagosome formation. Whereas yeast has a single Atg8 gene, many other eukaryotes contain multiple Atg8 orthologs. Atg8 genes of multicellular animals can be divided, by sequence similarities, into three subfamilies: microtubule-associated protein 1 light chain 3 (MAP1LC3 or LC3), gamma-aminobutyric acid receptor-associated protein (GABARAP) and Golgi-associated ATPase enhancer of 16 kDa (GATE-16), which are present in sponges, cnidarians (such as sea anemones, corals and hydras) and bilateral animals. Although genes from all three subfamilies are found in vertebrates, some invertebrate lineages have lost the genes from one or two subfamilies. The amino terminus of Atg8 proteins varies between the subfamilies and has a regulatory role in their various functions. Here we discuss the evolution of Atg8 proteins and summarize the current view of their function in intracellular trafficking and autophagy from a structural perspective.
Liou,2011 (21852138) Liou YC, Zhou XZ, Lu KP "Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins." Trends Biochem Sci 2011 Oct
Pin1 is a highly conserved enzyme that only isomerizes specific phosphorylated Ser/Thr-Pro bonds in certain proteins, thereby inducing conformational changes. Such conformational changes represent a novel and tightly controlled signaling mechanism regulating a spectrum of protein activities in physiology and disease; often through phosphorylation-dependent, ubiquitin-mediated proteasomal degradation. In this review, we summarize recent advances in elucidating the role and regulation of Pin1 in controlling protein stability. We also propose a mechanism by which Pin1 functions as a molecular switch to control the fates of phosphoproteins. We finally stress the need to develop tools to visualize directly Pin1-catalyzed protein conformational changes as a way to determine their roles in the development and treatment of human diseases.
Park,2011 (21841197) Park H, Lee JH, Gouin E, Cossart P, Izard T "The rickettsia surface cell antigen 4 applies mimicry to bind to and activate vinculin." J Biol Chem 2011 Oct 03
Pathogenic Rickettsia species cause high morbidity and mortality, especially R. prowazekii, the causative agent of typhus. Like many intracellular pathogens, Rickettsia exploit the cytoskeleton to enter and spread within the host cell. Here we report that the cell surface antigen sca4 of Rickettsia co-localizes with vinculin in cells at sites of focal adhesions in sca4-transfected cells and that sca4 binds to and activates vinculin through two vinculin binding sites (VBSs) that are conserved across all Rickettsia. Remarkably, this occurs through molecular mimicry of the vinculin-talin interaction that is also seen with the IpaA invasin of the intracellular pathogen Shigella, where binding of these VBSs to the vinculin seven-helix bundle head domain (Vh1) displaces intramolecular interactions with the vinculin tail domain that normally clamp vinculin in an inactive state. Finally, the vinculin.sca4-VBS crystal structures reveal that vinculin adopts a new conformation when bound to the C-terminal VBS of sca4. Collectively, our data define the mechanism by which sca4 activates vinculin and interacts with the actin cytoskeleton, and they suggest important roles for vinculin in Rickettsia pathogenesis.
Wei,2011 (21832156) Wei R, Ngo B, Wu G, Lee WH "Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint." Mol Biol Cell 2011 Sep 30
The spindle assemble checkpoint (SAC) is critical for accurate chromosome segregation. Hec1 contributes to chromosome segregation in part by mediating SAC signaling and chromosome alignment. However, the molecular mechanism by which Hec1 modulates checkpoint signaling and alignment remains poorly understood. We found that Hec1 serine 165 (S165) is preferentially phosphorylated at kinetochores. Phosphorylated Hec1 serine 165 (pS165) specifically localized to kinetochores of misaligned chromosomes, showing a spatiotemporal distribution characteristic of SAC molecules. Expressing an RNA interference (RNAi)-resistant S165A mutant in Hec1-depleted cells permitted normal progression to metaphase, but accelerated the metaphase-to-anaphase transition. The S165A cells were defective in Mad1 and Mad2 localization to kinetochores, regardless of attachment status. These cells often entered anaphase with lagging chromosomes and elicited increased segregation errors and cell death. In contrast, expressing S165E mutant in Hec1-depleted cells triggered defective chromosome alignment and severe mitotic arrest associated with increased Mad1/Mad2 signals at prometaphase kinetochores. A small portion of S165E cells eventually bypassed the SAC but showed severe segregation errors. Nek2 is the primary kinase responsible for kinetochore pS165, while PP1 phosphatase may dephosphorylate pS165 during SAC silencing. Taken together, these results suggest that modifications of Hec1 S165 serve as an important mechanism in modulating SAC signaling and chromosome alignment.
Havens,2011 (21828267) Havens CG, Walter JC "Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase." Genes Dev 2011 Aug 1
Eukaryotic cell cycle transitions are driven by E3 ubiquitin ligases that catalyze the ubiquitylation and destruction of specific protein targets. For example, the anaphase-promoting complex/cyclosome (APC/C) promotes the exit from mitosis via destruction of securin and mitotic cyclins, whereas CRL1(Skp2) allows entry into S phase by targeting the destruction of the cyclin-dependent kinase (CDK) inhibitor p27. Recently, an E3 ubiquitin ligase called CRL4(Cdt2) has been characterized, which couples proteolysis to DNA synthesis via an unusual mechanism that involves display of substrate degrons on the DNA polymerase processivity factor PCNA. Through its destruction of Cdt1, p21, and Set8, CRL4(Cdt2) has emerged as a master regulator that prevents rereplication in S phase. In addition, it also targets other factors such as E2F and DNA polymerase eta. In this review, we discuss our current understanding of the molecular mechanism of substrate recognition by CRL4(Cdt2) and how this E3 ligase helps to maintain genome integrity.
Chemes,2011 (21787785) Chemes LB, Sanchez IE, de Prat-Gay G "Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target." J Mol Biol 2011 Aug 25
The retinoblastoma tumor suppressor (Rb) plays a key role in cell cycle control and is linked to various types of human cancer. Rb binds to the LxCxE motif, present in a number of cellular and viral proteins such as AdE1A, SV40 large T-antigen and human papillomavirus (HPV) E7, all instrumental in revealing fundamental mechanisms of tumor suppression, cell cycle control and gene expression. A detailed kinetic study of RbAB binding to the HPV E7 oncoprotein shows that an LxCxE-containing E7 fragment binds through a fast two-state reaction strongly favored by electrostatic interactions. Conversely, full-length E7 binds through a multistep process involving a pre-equilibrium between E7 conformers, a fast electrostatically driven association step guided by the LxCxE motif and a slow conformational rearrangement. This kinetic complexity arises from the conformational plasticity and intrinsically disordered nature of E7 and from multiple interaction surfaces present in both proteins. Affinity differences between E7N domains from high- and low-risk types are explained by their dissociation rates. In fact, since Rb is at the center of a large protein interaction network, fast and tight recognition provides an advantage for disruption by the viral proteins, where the balance of physiological and pathological interactions is dictated by kinetic ligand competition. The localization of the LxCxE motif within an intrinsically disordered domain provides the fast, diffusion-controlled interaction that allows viral proteins to outcompete physiological targets. We describe the interaction mechanism of Rb with a protein ligand, at the same time an LxCxE-containing model target, and a paradigmatic intrinsically disordered viral oncoprotein.
Maki,2011 (21786200) Maki M, Suzuki H, Shibata H "Structure and function of ALG-2, a penta-EF-hand calcium-dependent adaptor protein." Sci China Life Sci 2011 Jul 25
ALG-2 (a gene product of PDCD6) is a 22-kD protein containing five serially repetitive EF-hand structures and belongs to the penta-EF-hand (PEF) family, including the subunits of typical calpains. ALG-2 is the most conserved protein among the PEF family members and its homologs are widely found in eukaryotes. X-ray crystal structures of various PEF proteins including ALG-2 have common features: presence of eight alpha-helices and dimer formation via paired EF5s that are positioned in anti-parallel orientation. ALG-2 forms a homodimer and a heterodimer with its closest paralog peflin. Like calmodulin, a well-known four-EF-hand protein, ALG-2 interacts with various proteins in a Ca(2+)-dependent fashion, but the binding motifs are completely different. With some exceptions, ALG-2-interacting proteins commonly contain Pro-rich regions, and ALG-2 recognizes at least two distinct Pro-containing motifs: PPYP(X)nYP (X, variable; n=4 in ALIX and PLSCR3) and PXPGF (represented by Sec31A). A shorter alternatively spliced isoform, lacking two residues and designated ALG-2(DeltaGF122), does not bind ALIX but maintains binding capacity to Sec31A. X-ray crystal structural analyses have revealed that binding of calcium ions induces the configuration of the side chain of R125 so that it opens Pocket 1, which accepts PPYP, but Pocket 1 remains closed in the case of ALG-2(DeltaGF122). ALG-2 dimer has two ligand-binding sites, each in a monomer molecule, and appears to function as a Ca(2+)-dependent adaptor protein to either stabilize a preformed complex or to bridge two proteins on scaffolds in systems of the endosomal sorting complex required for transport (ESCRT) and ER-to-Golgi transport.
Stafford,2011 (21763699) Stafford RL, Ear J, Knight MJ, Bowie JU "The molecular basis of the Caskin1 and Mint1 interaction with CASK." J Mol Biol 2011 Aug 19
Calcium/calmodulin-dependent serine protein kinase (CASK) is a conserved multi-domain scaffolding protein involved in brain development, synapse formation, and establishment of cell polarity. To accomplish these diverse functions, CASK participates in numerous protein-protein interactions. In particular, CASK forms competing CASK/Mint1/Velis and CASK/Caskin1/Velis tripartite complexes that physically associate with the cytoplasmic tail of neurexin, a transmembrane protein enriched at presynaptic sites. This study shows that a short linear EEIWVLRK peptide motif from Caskin1 is necessary and sufficient for binding CASK. We also identified the conserved binding site for the peptide on the CASK calmodulin kinase domain. A related EPIWVMRQ peptide from Mint1 was also discovered to be sufficient for binding. Searching all human proteins for the Mint1/Caskin1 consensus peptide ExIWVxR revealed that T-cell lymphoma invasion and metastasis 1 (TIAM1) contains a conserved EEVIWVRRE peptide that was also found to be sufficient for CASK binding in vitro. TIAM1 is well known for its role in tumor metastasis, but it also possesses overlapping cellular and neurological functions with CASK, suggesting a previously unknown cooperation between the two proteins. This new peptide interaction motif also explains how Caskin1 and Mint1 form competing complexes and suggests a new role for the cellular hub protein CASK.
Evans,2011 (21757287) Evans TI, Hell JW, Shea MA "Thermodynamic linkage between calmodulin domains binding calcium and contiguous sites in the C-terminal tail of Ca(V)1.2." Biophys Chem 2011 Nov
Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca(2+) channel (Ca(V)1.2) regulates Ca(2+) entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with Ca(V)1.2 under low resting [Ca(2+)], but is poised to change conformation and position when intracellular [Ca(2+)] rises. CaM binding Ca(2+), and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A(1588), and C(1614) and the IQ motif studied as overlapping peptides IQ(1644) and IQ'(1650) as well as their effect on calcium binding. (Ca(2+))(4)-CaM bound to all four peptides very favorably (K(d)</=2 nM). Linkage analysis showed that IQ(1644-1670) bound with a K(d)~1 pM. In the pre-IQ region, (Ca(2+))(2)-N-domain bound preferentially to A(1588), while (Ca(2+))(2)-C-domain preferred C(1614). When bound to C(1614), calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM.
Gaffarogullari,2011 (21740913) Gaffarogullari EC, Masterson LR, Metcalfe EE, Traaseth NJ, Balatri E, Musa MM, Mullen D, Distefano MD, Veglia G "A myristoyl/phosphoserine switch controls cAMP-dependent protein kinase association to membranes." J Mol Biol 2011 Aug 15
The cAMP-dependent protein kinase [protein kinase A (PKA)] mediates a myriad of cellular signaling events, and its activity is tightly regulated in both space and time. Among these regulatory mechanisms is N-myristoylation, whose biological role has been elusive. Using a combination of thermodynamics, kinetics, and spectroscopic methods, we analyzed the effects of N-myristoylation and phosphorylation at Ser10 on the interactions of PKA with model membranes. We found that, in the absence of lipids, the myristoyl group is tucked into the hydrophobic binding pocket of the enzyme (myr-in state). Upon association with lipid bilayers, the myristoyl group is extruded and inserts into the hydrocarbon region of the lipid bilayer (myr-out state). NMR data indicate that the enzyme undergoes conformational equilibrium between myr-in and myr-out states, which can be shifted byeither interaction with membranes and/or phosphorylation at Ser10. Our results provide evidence that the membrane binding motif of the myristoylated C-subunit of PKA (PKA-C) steers the enzyme toward lipids independent of its regulatory subunit or an A-kinase anchoring protein, providing an additional mechanism to localize the enzyme near membrane-bound substrates.
Vernoux,2011 (21734647) Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guedon Y, Armitage L, Picard F, Guyomarc'h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J "The auxin signalling network translates dynamic input into robust patterning at the shoot apex." Mol Syst Biol 2011 Jul 07
The plant hormone auxin is thought to provide positional information for patterning during development. It is still unclear, however, precisely how auxin is distributed across tissues and how the hormone is sensed in space and time. The control of gene expression in response to auxin involves a complex network of over 50 potentially interacting transcriptional activators and repressors, the auxin response factors (ARFs) and Aux/IAAs. Here, we perform a large-scale analysis of the Aux/IAA-ARF pathway in the shoot apex of Arabidopsis, where dynamic auxin-based patterning controls organogenesis. A comprehensive expression map and full interactome uncovered an unexpectedly simple distribution and structure of this pathway in the shoot apex. A mathematical model of the Aux/IAA-ARF network predicted a strong buffering capacity along with spatial differences in auxin sensitivity. We then tested and confirmed these predictions using a novel auxin signalling sensor that reports input into the signalling pathway, in conjunction with the published DR5 transcriptional output reporter. Our results provide evidence that the auxin signalling network is essential to create robust patterns at the shoot apex.
Barrera-Vilarmau,2011 (21731739) Barrera-Vilarmau S, Obregon P, de Alba E "Intrinsic order and disorder in the bcl-2 member harakiri: insights into its proapoptotic activity." PLoS One 2011 Jul 06
Harakiri is a BH3-only member of the Bcl-2 family that localizes in membranes and induces cell death by binding to prosurvival Bcl-x(L) and Bcl-2. The cytosolic domain of Harakiri is largely disorder with residual alpha-helical conformation according to previous structural studies. As these helical structures could play an important role in Harakiri's function, we have used NMR and circular dichroism to fully characterize them at the residue-atomic level. In addition, we report structural studies on a peptide fragment spanning Harakiri's C-terminal hydrophobic sequence, which potentially operates as a transmembrane domain. We initially checked by enzyme immunoassays and NMR that peptides encompassing different lengths of the cytosolic domain are functional as they bind Bcl-x(L) and Bcl-2. The structural data in water indicate that the alpha-helical conformation is restricted to a 25-residue segment comprising the BH3 domain. However, structure calculation was precluded because of insufficient NMR restraints. To bypass this problem we used alcohol-water mixture to increase structure population and confirmed by NMR that the conformation in both milieus is equivalent. The resulting three-dimensional structure closely resembles that of peptides encompassing the BH3 domain of BH3-only members in complex with their prosurvival partners, suggesting that preformed structural elements in the disordered protein are central to binding. In contrast, the transmembrane domain forms in micelles a monomeric alpha-helix with a population close to 100%. Its three-dimensional structure here reported reveals features that explain its function as membrane anchor. Altogether these results are used to propose a tentative structural model of how Harakiri works.
Oliver,2011 (21726810) Oliver TG, Meylan E, Chang GP, Xue W, Burke JR, Humpton TJ, Hubbard D, Bhutkar A, Jacks T "Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop." Mol Cell 2011 Jul 05
Caspase-2 is an evolutionarily conserved caspase, yet its biological function and cleavage targets are poorly understood. Caspase-2 is activated by the p53 target gene product PIDD (also known as LRDD) in a complex called the Caspase-2-PIDDosome. We show that PIDD expression promotes growth arrest and chemotherapy resistance by a mechanism that depends on Caspase-2 and wild-type p53. PIDD-induced Caspase-2 directly cleaves the E3 ubiquitin ligase Mdm2 at Asp 367, leading to loss of the C-terminal RING domain responsible for p53 ubiquitination. As a consequence, N-terminally truncated Mdm2 binds p53 and promotes its stability. Upon DNA damage, p53 induction of the Caspase-2-PIDDosome creates a positive feedback loop that inhibits Mdm2 and reinforces p53 stability and activity, contributing to cell survival and drug resistance. These data establish Mdm2 as a cleavage target of Caspase-2 and provide insight into a mechanism of Mdm2 inhibition that impacts p53 dynamics upon genotoxic stress.
Gaudioso,2011 (21726526) Gaudioso C, Carlier E, Youssouf F, Clare JJ, Debanne D, Alcaraz G "Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel." Biochem Biophys Res Commun 2011 Jul 29
Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca(++) depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca(++) could bind the Nav1.1 C-terminal region with micromolar affinity.
Puklowski,2011 (21725316) Puklowski A, Homsi Y, Keller D, May M, Chauhan S, Kossatz U, Grunwald V, Kubicka S, Pich A, Manns MP, Hoffmann I, Gonczy P, Malek NP "The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication." Nat Cell Biol 2011 Aug 02
Deregulated centrosome duplication can result in genetic instability and contribute to tumorigenesis. Here, we show that centrosome duplication is regulated by the activity of an E3-ubiquitin ligase that employs the F-box protein FBXW5 (ref. 3) as its targeting subunit. Depletion of endogenous FBXW5 or overexpression of an F-box-deleted mutant version results in centrosome overduplication and formation of multipolar spindles. We identify the centriolar protein HsSAS-6 (refs 4,5) as a critical substrate of the SCF-FBXW5 complex. FBXW5 binds HsSAS-6 and promotes its ubiquitylation in vivo. The activity of SCF-FBXW5 is in turn negatively regulated by Polo-like kinase 4 (PLK4), which phosphorylates FBXW5 at Ser 151 to suppress its ability to ubiquitylate HsSAS-6. FBXW5 is a cell-cycle-regulated protein with expression levels peaking at the G1/S transition. We show that FBXW5 levels are controlled by the anaphase-promoting (APC/C) complex, which targets FBXW5 for degradation during mitosis and G1, thereby helping to reset the centrosome duplication machinery. In summary, we show that a cell-cycle-regulated SCF complex is regulated by the kinase PLK4, and that this in turn restricts centrosome re-duplication through degradation of the centriolar protein HsSAS-6.
Caballe,2011 (21722282) Caballe A, Martin-Serrano J "ESCRT machinery and cytokinesis: the road to daughter cell separation." Traffic 2011 Sep 12
The endosomal sorting complex required for transport (ESCRT) machinery is a set of cellular protein complexes required for at least three topologically equivalent membrane scission events, namely multivesicular body (MVB) formation, retroviral particle release and midbody abscission during cytokinesis. Recently, several studies have explored the mechanism by which the core ESCRT-III subunits mediate membrane scission and might be differentially required according to the functions of the pathway. In this review, we discuss the links between the ESCRT machinery and cytokinesis, with special focus on abscission initiation and regulation.
Alexander,2011 (21712545) Alexander J, Lim D, Joughin BA, Hegemann B, Hutchins JR, Ehrenberger T, Ivins F, Sessa F, Hudecz O, Nigg EA, Fry AM, Musacchio A, Stukenberg PT, Mechtler K, Peters JM, Smerdon SJ, Yaffe MB "Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling." Sci Signal 2011 Jun 29
The timing and localization of events during mitosis are controlled by the regulated phosphorylation of proteins by the mitotic kinases, which include Aurora A, Aurora B, Nek2 (never in mitosis kinase 2), Plk1 (Polo-like kinase 1), and the cyclin-dependent kinase complex Cdk1/cyclin B. Although mitotic kinases can have overlapping subcellular localizations, each kinase appears to phosphorylate its substrates on distinct sites. To gain insight into the relative importance of local sequence context in kinase selectivity, identify previously unknown substrates of these five mitotic kinases, and explore potential mechanisms for substrate discrimination, we determined the optimal substrate motifs of these major mitotic kinases by positional scanning oriented peptide library screening (PS-OPLS). We verified individual motifs with in vitro peptide kinetic studies and used structural modeling to rationalize the kinase-specific selection of key motif-determining residues at the molecular level. Cross comparisons among the phosphorylation site selectivity motifs of these kinases revealed an evolutionarily conserved mutual exclusion mechanism in which the positively and negatively selected portions of the phosphorylation motifs of mitotic kinases, together with their subcellular localizations, result in proper substrate targeting in a coordinated manner during mitosis.
Liu,2011 (21703451) Liu W, Wen W, Wei Z, Yu J, Ye F, Liu CH, Hardie RC, Zhang M "The INAD scaffold is a dynamic, redox-regulated modulator of signaling in the Drosophila eye." Cell 2011 Jun 24
INAD is a scaffolding protein that regulates signaling in Drosophila photoreceptors. One of its PDZ domains, PDZ5, cycles between reduced and oxidized forms in response to light, but it is unclear how light affects its redox potential. Through biochemical and structural studies, we show that the redox potential of PDZ5 is allosterically regulated by its interaction with another INAD domain, PDZ4. Whereas isolated PDZ5 is stable in the oxidized state, formation of a PDZ45 "supramodule" locks PDZ5 in the reduced state by raising the redox potential of its Cys606/Cys645 disulfide bond by approximately 330 mV. Acidification, potentially mediated via light and PLCbeta-mediated hydrolysis of PIP(2), disrupts the interaction between PDZ4 and PDZ5, leading to PDZ5 oxidation and dissociation from the TRP Ca(2+) channel, a key component of fly visual signaling. These results show that scaffolding proteins can actively modulate the intrinsic redox potentials of their disulfide bonds to exert regulatory roles in signaling.
Fitzgerald,2012 (21701498) Fitzgerald JC, Camprubi MD, Dunn L, Wu HC, Ip NY, Kruger R, Martins LM, Wood NW, Plun-Favreau H "Phosphorylation of HtrA2 by cyclin-dependent kinase-5 is important for mitochondrial function." Cell Death Differ 2012 Jan 10
The role of the serine protease HtrA2 in neuroprotection was initially identified by the demonstration of neurodegeneration in mice lacking HtrA2 expression or function, and the interesting finding that mutations adjacent to two putative phosphorylation sites (S142 and S400) have been found in Parkinson's disease patients. However, the mechanism of this neuroprotection and the signalling pathways associated with it remain mostly unknown. Here we report that cyclin-dependent kinase-5 (Cdk5), a kinase implicated in the pathogenesis of several neurodegenerative diseases, is responsible for phosphorylating HtrA2 at S400. HtrA2 and Cdk5 interact in human and mouse cell lines and brain, and Cdk5 phosphorylates S400 on HtrA2 in a p38-dependent manner. Phosphorylation of HtrA2 at S400 is involved in maintaining mitochondrial membrane potential under stress conditions and is important for mitochondrial function, conferring cells protection against cellular stress.
Bodmer,2011 (21689596) Bodmer D, Ascano M, Kuruvilla R "Isoform-specific dephosphorylation of dynamin1 by calcineurin couples neurotrophin receptor endocytosis to axonal growth." Neuron 2011 Jun 21
Endocytic events are critical for neuronal survival in response to target-derived neurotrophic cues, but whether local axon growth is mediated by endocytosis-dependent signaling mechanisms remains unclear. Here, we report that Nerve Growth Factor (NGF) promotes endocytosis of its TrkA receptors and axon growth by calcineurin-mediated dephosphorylation of the endocytic GTPase dynamin1. Conditional deletion of calcineurin in sympathetic neurons disrupts NGF-dependent innervation of peripheral target tissues. Calcineurin signaling is required locally in sympathetic axons to support NGF-mediated growth in a manner independent of transcription. We show that calcineurin associates with dynamin1 via a PxIxIT interaction motif found only in specific dynamin1 splice variants. PxIxIT-containing dynamin1 isoforms colocalize with surface TrkA receptors, and their phosphoregulation is selectively required for NGF-dependent TrkA internalization and axon growth in sympathetic neurons. Thus, NGF-dependent phosphoregulation of dynamin1 is a critical event coordinating neurotrophin receptor endocytosis and axonal growth.
Kevei,2011 (21687678) Kevei Z, Baloban M, Da Ines O, Tiricz H, Kroll A, Regulski K, Mergaert P, Kondorosi E "Conserved CDC20 cell cycle functions are carried out by two of the five isoforms in Arabidopsis thaliana." PLoS One 2011 Jun 20
BACKGROUND: The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development. METHODOLOGY/PRINCIPAL FINDINGS: Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC) and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth. CONCLUSIONS/SIGNIFICANCE: The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly "retrogenes" and have hitherto undefined functions or are pseudogenes.
Aragon,2011 (21685363) Aragon E, Goerner N, Zaromytidou AI, Xi Q, Escobedo A, Massague J, Macias MJ "A Smad action turnover switch operated by WW domain readers of a phosphoserine code." Genes Dev 2011 Jun 20
When directed to the nucleus by TGF-beta or BMP signals, Smad proteins undergo cyclin-dependent kinase 8/9 (CDK8/9) and glycogen synthase kinase-3 (GSK3) phosphorylations that mediate the binding of YAP and Pin1 for transcriptional action, and of ubiquitin ligases Smurf1 and Nedd4L for Smad destruction. Here we demonstrate that there is an order of events-Smad activation first and destruction later-and that it is controlled by a switch in the recognition of Smad phosphoserines by WW domains in their binding partners. In the BMP pathway, Smad1 phosphorylation by CDK8/9 creates binding sites for the WW domains of YAP, and subsequent phosphorylation by GSK3 switches off YAP binding and adds binding sites for Smurf1 WW domains. Similarly, in the TGF-beta pathway, Smad3 phosphorylation by CDK8/9 creates binding sites for Pin1 and GSK3, then adds sites to enhance Nedd4L binding. Thus, a Smad phosphoserine code and a set of WW domain code readers provide an efficient solution to the problem of coupling TGF-beta signal delivery to turnover of the Smad signal transducers.
Padrick,2011 (21676863) Padrick SB, Doolittle LK, Brautigam CA, King DS, Rosen MK "Arp2/3 complex is bound and activated by two WASP proteins." Proc Natl Acad Sci U S A 2011 Aug 17
Actin related protein 2/actin related protein 3 (Arp2/3) complex nucleates new actin filaments in eukaryotic cells in response to signals from proteins in the Wiskott-Aldrich syndrome protein (WASP) family. The conserved VCA domain of WASP proteins activates Arp2/3 complex by inducing conformational changes and delivering the first actin monomer of the daughter filament. Previous models of activation have invoked a single VCA acting at a single site on Arp2/3 complex. Here we show that activation most likely involves engagement of two distinct sites on Arp2/3 complex by two VCA molecules, each delivering an actin monomer. One site is on Arp3 and the second is on ARPC1 and Arp2. The VCAs at these sites have distinct roles in activation. Our findings reconcile apparently conflicting literature on VCA activation of Arp2/3 complex and lead to a new model for this process.
Ti,2011 (21676862) Ti SC, Jurgenson CT, Nolen BJ, Pollard TD "Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex." Proc Natl Acad Sci U S A 2011 Aug 17
Actin-related protein (Arp) 2/3 complex mediates the formation of actin filament branches during endocytosis and at the leading edge of motile cells. The pathway of branch formation is ambiguous owing to uncertainty regarding the stoichiometry and location of VCA binding sites on Arp2/3 complex. Isothermal titration calorimetry showed that the CA motif from the C terminus of fission yeast WASP (Wsp1p) bound to fission yeast and bovine Arp2/3 complex with a stoichiometry of 2 to 1 and very different affinities for the two sites (K(d)s of 0.13 and 1.6 muM for fission yeast Arp2/3 complex). Equilibrium binding, kinetic, and cross-linking experiments showed that (i) CA at high-affinity site 1 inhibited Arp2/3 complex binding to actin filaments, (ii) low-affinity site 2 had a higher affinity for CA when Arp2/3 complex was bound to actin filaments, and (iii) Arp2/3 complex had a much higher affinity for free CA than VCA cross-linked to an actin monomer. Crystal structures showed the C terminus of CA bound to the low-affinity site 2 on Arp3 of bovine Arp2/3 complex. The C helix is likely to bind to the barbed end groove of Arp3 in a position for VCA to deliver the first actin subunit to the daughter filament.
Pick,2011 (21676252) Pick C, Ebersberger I, Spielmann T, Bruchhaus I, Burmester T "Phylogenomic analyses of malaria parasites and evolution of their exported proteins." BMC Evol Biol 2011 Jun 15
BACKGROUND: Plasmodium falciparum is the most malignant agent of human malaria. It belongs to the taxon Laverania, which includes other ape-infecting Plasmodium species. The origin of the Laverania is still debated. P. falciparum exports pathogenicity-related proteins into the host cell using the Plasmodium export element (PEXEL). Predictions based on the presence of a PEXEL motif suggest that more than 300 proteins are exported by P. falciparum, while there are many fewer exported proteins in non-Laverania. RESULTS: A whole-genome approach was applied to resolve the phylogeny of eight Plasmodium species and four outgroup taxa. By using 218 orthologous proteins we received unanimous support for a sister group position of Laverania and avian malaria parasites. This observation was corroborated by the analyses of 28 exported proteins with orthologs present in all Plasmodium species. Most interestingly, several deviations from the P. falciparum PEXEL motif were found to be present in the orthologous sequences of non-Laverania. CONCLUSION: Our phylogenomic analyses strongly support the hypotheses that the Laverania have been founded by a single Plasmodium species switching from birds to African great apes or vice versa. The deviations from the canonical PEXEL motif in orthologs may explain the comparably low number of exported proteins that have been predicted in non-Laverania.
Mouilleron,2011 (21673315) Mouilleron S, Langer CA, Guettler S, McDonald NQ, Treisman R "Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator." Sci Signal 2011
Subcellular localization of the actin-binding transcriptional coactivator MRTF-A is controlled by its interaction with monomeric actin (G-actin). Signal-induced decreases in G-actin concentration reduce MRTF-A nuclear export, leading to its nuclear accumulation, whereas artificial increases in G-actin concentration in resting cells block MRTF-A nuclear import, retaining it in the cytoplasm. This regulation is dependent on three actin-binding RPEL motifs in the regulatory domain of MRTF-A. We describe the structures of pentavalent and trivalent G-actin*RPEL domain complexes. In the pentavalent complex, each RPEL motif and the two intervening spacer sequences bound an actin monomer, forming a compact assembly. In contrast, the trivalent complex lacked the C-terminal spacer- and RPEL-actins, both of which bound only weakly in the pentavalent complex. Cytoplasmic localization of MRTF-A in unstimulated fibroblasts also required binding of G-actin to the spacer sequences. The bipartite MRTF-A nuclear localization sequence was buried in the pentameric assembly, explaining how increases in G-actin concentration prevent nuclear import of MRTF-A. Analyses of the pentavalent and trivalent complexes show how actin loads onto the RPEL domain and reveal a molecular mechanism by which actin can control the activity of one of its binding partners.
Crawley,2011 (21671662) Crawley SW, Liburd J, Shaw K, Jung Y, Smith SP, Cote GP "Identification of calmodulin and MlcC as light chains for dictyostelium myosin-I isozymes." Biochemistry 2011 Aug 2
Dictyostelium discoideum express seven single-headed myosin-I isozymes (MyoA-MyoE and MyoK) that drive motile processes at the cell membrane. The light chains for MyoA and MyoE were identified by expressing Flag-tagged constructs consisting of the motor domain and the two IQ motifs in the neck region in Dictyostelium. The MyoA and MyoE constructs both copurified with calmodulin. Isothermal titration calorimetry (ITC) showed that apo-calmodulin bound to peptides corresponding to the MyoA and MyoE IQ motifs with micromolar affinity. In the presence of calcium, calmodulin cross-linked two IQ motif peptides, with one domain binding with nanomolar affinity and the other with micromolar affinity. The IQ motifs were required for the actin-activated MgATPase activity of MyoA but not MyoE; however, neither myosin exhibited calcium-dependent activity. A Flag-tagged construct consisting of the MyoC motor domain and the three IQ motifs in the adjacent neck region bound a novel 8.6 kDa two EF-hand protein named MlcC, for myosin light chain for MyoC. MlcC is most similar to the C-terminal domain of calmodulin but does not bind calcium. ITC studies showed that MlcC binds IQ1 and IQ2 but not IQ3 of MyoC. IQ3 contains a proline residue that may render it nonfunctional. Each long-tailed Dictyostelium myosin-I has now been shown to have a unique light chain (MyoB-MlcB, MyoC-MlcC, and MyoD-MlcD), whereas the short-tailed myosins-I, MyoA and MyoE, have the multifunctional calmodulin as a light chain. The diversity in light chain composition is likely to contribute to the distinct cellular functions of each myosin-I isozyme.
Greenbaum,2011 (21669984) Greenbaum MP, Iwamori T, Buchold GM, Matzuk MM "Germ cell intercellular bridges." Cold Spring Harb Perspect Biol 2011 Aug 02
Stable intercellular bridges are a conserved feature of gametogenesis in multicellular animals observed more than 100 years ago, but their function was unknown. Many of the components necessary for this structure have been identified through the study of cytokinesis in Drosophila; however, mammalian intercellular bridges have distinct properties from those of insects. Mammalian germ cell intercellular bridges are composed of general cytokinesis components with additional germ cell-specific factors including TEX14. TEX14 is an inactive kinase essential for the maintenance of stable intercellular bridges in gametes of both sexes but whose loss specifically impairs male meiosis. TEX14 acts to impede the terminal steps of abscission by competing for essential component CEP55, blocking its interaction in nongerm cells with ALIX and TSG101. Additionally, TEX14-interacting protein RBM44, whose localization in stabile intercellular bridges is limited to pachytene and secondary spermatocytes, may participate in processes such as RNA transport but is nonessential to the maintenance of intercellular bridge stability.
Pirruccello,2011 (21666675) Pirruccello M, Swan LE, Folta-Stogniew E, De Camilli P "Recognition of the F&H motif by the Lowe syndrome protein OCRL." Nat Struct Mol Biol 2011 Jul 06
Lowe syndrome and type 2 Dent disease are caused by defects in the inositol 5-phosphatase OCRL. Most missense mutations in the OCRL ASH-RhoGAP domain that are found in affected individuals abolish interactions with the endocytic adaptors APPL1 and Ses (both Ses1 and Ses2), which bind OCRL through a short phenylalanine and histidine (F&H) motif. Using X-ray crystallography, we have identified the F&H motif binding site on the RhoGAP domain of OCRL. Missense mutations associated with disease affected F&H binding indirectly by destabilizing the RhoGAP fold. By contrast, a disease-associated mutation that does not perturb F&H binding and ASH-RhoGAP stability disrupted the interaction of OCRL with Rab5. The F&H binding site of OCRL is conserved even in species that do not have an identified homolog for APPL or Ses. Our study predicts the existence of other OCRL binding partners and shows that the perturbation of OCRL interactions has a crucial role in disease.
Jia,2011 (21663793) Jia H, Wang X, Liu F, Guenther UP, Srinivasan S, Anderson JT, Jankowsky E "The RNA helicase Mtr4p modulates polyadenylation in the TRAMP complex." Cell 2011 Jun 13
Many steps in nuclear RNA processing, surveillance, and degradation require TRAMP, a complex containing the poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for decay or trimming by the nuclear exosome. It has been unclear how polyadenylation by TRAMP differs from polyadenylation by conventional poly(A) polymerase, which produces poly(A) tails that stabilize RNAs. Using reconstituted S. cerevisiae TRAMP, we show that TRAMP inherently suppresses poly(A) addition after only 3-4 adenosines. This poly(A) tail length restriction is controlled by Mtr4p. The helicase detects the number of 3'-terminal adenosines and, over several adenylation steps, elicits precisely tuned adjustments of ATP affinities and rate constants for adenylation and TRAMP dissociation. Our data establish Mtr4p as a critical regulator of polyadenylation by TRAMP and reveal that an RNA helicase can control the activity of another enzyme in a highly complex fashion and in response to features in RNA.
Koivomagi,2011 (21658602) Koivomagi M, Valk E, Venta R, Iofik A, Lepiku M, Morgan DO, Loog M "Dynamics of Cdk1 substrate specificity during the cell cycle." Mol Cell 2011 Jun 10
Cdk specificity is determined by the intrinsic selectivity of the active site and by substrate docking sites on the cyclin subunit. There is a long-standing debate about the relative importance of these factors in the timing of Cdk1 substrate phosphorylation. We analyzed major budding yeast cyclins (the G1/S-cyclin Cln2, S-cyclin Clb5, G2/M-cyclin Clb3, and M-cyclin Clb2) and found that the activity of Cdk1 toward the consensus motif increased gradually in the sequence Cln2-Clb5-Clb3-Clb2, in parallel with cell cycle progression. Further, we identified a docking element that compensates for the weak intrinsic specificity of Cln2 toward G1-specific targets. In addition, Cln2-Cdk1 showed distinct consensus site specificity, suggesting that cyclins do not merely activate Cdk1 but also modulate its active-site specificity. Finally, we identified several Cln2-, Clb3-, and Clb2-specific Cdk1 targets. We propose that robust timing and ordering of cell cycle events depend on gradual changes in the substrate specificity of Cdk1.
Slupianek,2011 (21653319) Slupianek A, Dasgupta Y, Ren SY, Gurdek E, Donlin M, Nieborowska-Skorska M, Fleury F, Skorski T "Targeting RAD51 phosphotyrosine-315 to prevent unfaithful recombination repair in BCR-ABL1 leukemia." Blood 2011 Jul 29
Chronic myeloid leukemia chronic phase (CML-CP) CD34(+) cells contain numerous DNA double-strand breaks whose unfaithful repair may contribute to chromosomal instability and disease progression to blast phase (CML-BP). These phenomena are often associated with the appearance of imatinib-resistant BCR-ABL1 kinase mutants (eg, T315I) and overexpression of BCR-ABL1. Here we show that BCR-ABL1 (nonmutated and T315I mutant) promoted RAD51 recombinase-mediated unfaithful homeologous recombination repair (HomeoRR) in a dosage-dependent manner. BCR-ABL1 SH3 domain interacts with RAD51 proline-rich regions, resulting in direct phosphorylation of RAD51 on Y315 (pY315). RAD51(pY315) facilitates dissociation from the complex with BCR-ABL1 kinase, migrates to the nucleus, and enhances formation of the nuclear foci indicative of recombination sites. HomeoRR and RAD51 nuclear foci were strongly reduced by RAD51(Y315F) phosphorylation-less mutant. In addition, peptide aptamer mimicking RAD51(pY315) fragment, but not that with Y315F phosphorylation-less substitution, diminished RAD51 foci formation and inhibited HomeoRR in leukemia cells. In conclusion, we postulate that BCR-ABL1 kinase-mediated RAD51(pY315) promotes unfaithful HomeoRR in leukemia cells, which may contribute to accumulation of secondary chromosomal aberrations responsible for CML relapse and progression.
van der Vaart,2011 (21646404) van der Vaart B, Manatschal C, Grigoriev I, Olieric V, Gouveia SM, Bjelic S, Demmers J, Vorobjev I, Hoogenraad CC, Steinmetz MO, Akhmanova A "SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase." J Cell Biol 2011 Jun 13
The ends of growing microtubules (MTs) accumulate a set of diverse factors known as MT plus end-tracking proteins (+TIPs), which control microtubule dynamics and organization. In this paper, we identify SLAIN2 as a key component of +TIP interaction networks. We showed that the C-terminal part of SLAIN2 bound to end-binding proteins (EBs), cytoplasmic linker proteins (CLIPs), and CLIP-associated proteins and characterized in detail the interaction of SLAIN2 with EB1 and CLIP-170. Furthermore, we found that the N-terminal part of SLAIN2 interacted with ch-TOG, the mammalian homologue of the MT polymerase XMAP215. Through its multiple interactions, SLAIN2 enhanced ch-TOG accumulation at MT plus ends and, as a consequence, strongly stimulated processive MT polymerization in interphase cells. Depletion or disruption of the SLAIN2-ch-TOG complex led to disorganization of the radial MT array. During mitosis, SLAIN2 became highly phosphorylated, and its interaction with EBs and ch-TOG was inhibited. Our study provides new insights into the molecular mechanisms underlying cell cycle-specific regulation of MT polymerization and the organization of the MT network.
Kumagai,2011 (21646402) Kumagai A, Shevchenko A, Dunphy WG "Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication." J Cell Biol 2011 Jun 13
Treslin, a TopBP1-interacting protein, is necessary for deoxyribonucleic acid (DNA) replication in vertebrates. Association between Treslin and TopBP1 requires cyclin-dependent kinase (Cdk) activity in Xenopus laevis egg extracts. We investigated the mechanism and functional importance of Cdk for this interaction using both X. laevis egg extracts and human cells. We found that Treslin also associated with TopBP1 in a Cdk-regulated manner in human cells and that Treslin was phosphorylated within a conserved Cdk consensus target sequence (on S976 in X. laevis and S1000 in humans). Recombinant human Cdk2-cyclin E also phosphorylated this residue of Treslin in vitro very effectively. Moreover, a mutant of Treslin that cannot undergo phosphorylation on this site showed significantly diminished binding to TopBP1. Finally, human cells harboring this mutant were severely deficient in DNA replication. Collectively, these results indicate that Cdk-mediated phosphorylation of Treslin during S phase is necessary for both its effective association with TopBP1 and its ability to promote DNA replication in human cells.
Goodarzi,2011 (21642969) Goodarzi AA, Kurka T, Jeggo PA "KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response." Nat Struct Mol Biol 2011 Jul 06
KAP-1 poses a substantial barrier to DNA double-strand break (DSB) repair within heterochromatin that is alleviated by ATM-dependent KAP-1 phosphorylation (pKAP-1). Here we address the mechanistic consequences of pKAP-1 that promote heterochromatic DSB repair and chromatin relaxation. KAP-1 function involves autoSUMOylation and recruitment of nucleosome deacetylation, methylation and remodeling activities. Although heterochromatin acetylation or methylation changes were not detected, radiation-induced pKAP-1 dispersed the nucleosome remodeler CHD3 from DSBs and triggered concomitant chromatin relaxation; pKAP-1 loss reversed these effects. Depletion or inactivation of CHD3, or ablation of its interaction with KAP-1(SUMO1), bypassed pKAP-1's role in repair. Though KAP-1 SUMOylation was unaffected after irradiation, CHD3 dissociated from KAP-1(SUMO1) in a pKAP-1-dependent manner. We demonstrate that KAP-1(Ser824) phosphorylation generates a motif that directly perturbs interactions between CHD3's SUMO-interacting motif and SUMO1, dispersing CHD3 from heterochromatin DSBs and enabling repair.
Lobjois,2011 (21640712) Lobjois V, Froment C, Braud E, Grimal F, Burlet-Schiltz O, Ducommun B, Bouche JP "Study of the docking-dependent PLK1 phosphorylation of the CDC25B phosphatase." Biochem Biophys Res Commun 2011 Jun 27
CDC25 (A, B and C) phosphatases control cell cycle progression through the timely dephosphorylation and activation of cyclin-dependent kinases (CDK). At mitosis the CDC25B phosphatase activity is dependent on its phosphorylation by multiple kinases impinging on its localisation, stability and catalytic activity. Here we report that prior phosphorylation of CDC25B by CDK1 enhances its substrate properties for PLK1 in vitro, and we also show that phosphorylated S50 serves as a docking site for PLK1. Using a sophisticated strategy based on the sequential phosphorylation of CDC25B with (16)O and (18)O ATP prior to nanoLC-MS/MS analysis we identified 13 sites phosphorylated by PLK1. This study illustrates the complexity of the phosphorylation pattern and of the subsequent regulation of CDC25B activity.
Varshavsky,2011 (21633985) Varshavsky A "The N-end rule pathway and regulation by proteolysis." Protein Sci 2011 Jun 02
The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing N(alpha) -terminally acetylated (Nt-acetylated) residues. The Arg/N-end rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus most proteins harbor a specific degradation signal, termed (Ac) N-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Nt-amidases, arginyl-transferases and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.
Pines,2011 (21633387) Pines J "Cubism and the cell cycle: the many faces of the APC/C." Nat Rev Mol Cell Biol 2011 Jun 23
One does not often look to analytic cubism for insights into the control of the cell cycle, but Pablo Picasso beautifully encapsulated the fundamentals when he said that "every act of creation is, first of all, an act of destruction". The rapid destruction of specific cell cycle regulators at just the right moment in the cell cycle ensures that daughter cells receive an equal and identical set of chromosomes from their mother and that DNA replication always follows mitosis. Remarkably, one protein complex is responsible for this surgical precision, the APC/C (anaphase-promoting complex, also known as the cyclosome). The APC/C is tightly regulated by its co-activators and by the spindle assembly checkpoint.
Rozenknop,2011 (21620860) Rozenknop A, Rogov VV, Rogova NY, Lohr F, Guntert P, Dikic I, Dotsch V "Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1." J Mol Biol 2011 Jun 24
Selective autophagy requires the specific segregation of targeted proteins into autophagosomes. The selectivity is mediated by autophagy receptors, such as p62 and NBR1, which can bind to autophagic effector proteins (Atg8 in yeast, MAP1LC3 protein family in mammals) anchored in the membrane of autophagosomes. Recognition of autophagy receptors by autophagy effectors takes place through an LC3 interaction region (LIR). The canonical LIR motif consists of a WXXL sequence, N-terminally preceded by negatively charged residues. The LIR motif of NBR1 presents differences to this classical LIR motif with a tyrosine residue and an isoleucine residue substituting the tryptophan residue and the leucine residue, respectively. We have determined the structure of the GABARAPL-1/NBR1-LIR complex and studied the influence of the different residues belonging to the LIR motif for the interaction with several mammalian autophagy modifiers (LC3B and GABARAPL-1). Our results indicate that the presence of a tryptophan residue in the LIR motif increases the binding affinity. Substitution by other aromatic amino acids or increasing the number of negatively charged residues at the N-terminus of the LIR motif, however, has little effect on the binding affinity due to enthalpy-entropy compensation. This indicates that different LIRs can interact with autophagy modifiers with unique binding properties.
Wild,2011 (21617041) Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I "Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth." Science 2011 Jul 08
Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitin-coated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin- or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.
Cornils,2011 (21593588) Cornils H, Kohler RS, Hergovich A, Hemmings BA "Downstream of human NDR kinases: impacting on c-myc and p21 protein stability to control cell cycle progression." Cell Cycle 2011 Jun 30
The mammalian genome encodes four members of the NDR/LATS kinase family: NDR1 (STK38), NDR2 (STK38L), LATS1 and LATS2, which are highly conserved from yeast to man. Members of the NDR/LATS kinase family have been implicated in a variety of biological processes ranging from cell division and morphology to apoptosis and tumor suppression. In mammals, LATS1/2 function as central parts of the HIPPO tumor suppressor pathway by restricting the activity of the YAP/TAZ proto-oncogenes. Recent evidence suggested that NDR1/2 are also part of an extended HIPPO tumor suppressor pathway. Apart from functions in apoptosis signaling and tumor suppression, NDR1/2 have been implicated in controlling centrosome duplication and mitotic chromosome alignment downstream of the HIPPO kinase homologs MST1 and MST2. Significantly, we also reported recently that NDR1/2 are controlling G 1/S transition downstream of a third MST family member MST3. Intriguingly, this newly described MST3-NDR1/2 axis promotes G 1 progression by stabilizing c-myc and preventing p21 accumulation, indicating a potential pro-tumorigenic role for NDR kinases. Here, we discuss these novel cell cycle functions of NDR kinases in a broader context and elaborate on possible explanations for the opposing functions of NDR kinases in normal and tumor biology.
Vitari,2011 (21572435) Vitari AC, Leong KG, Newton K, Yee C, O'Rourke K, Liu J, Phu L, Vij R, Ferrando R, Couto SS, Mohan S, Pandita A, Hongo JA, Arnott D, Wertz IE, Gao WQ, French DM, Dixit VM "COP1 is a tumour suppressor that causes degradation of ETS transcription factors." Nature 2011 Jun 16
The proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5. ETV1, which is mutated in prostate cancer more often, was degraded after being ubiquitinated by COP1. Truncated ETV1 encoded by prostate cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and was 50-fold more stable than wild-type ETV1. Almost all patient translocations render ETV1 insensitive to COP1, implying that this confers a selective advantage to prostate epithelial cells. Indeed, COP1 deficiency in mouse prostate elevated ETV1 and produced increased cell proliferation, hyperplasia, and early prostate intraepithelial neoplasia. Combined loss of COP1 and PTEN enhanced the invasiveness of mouse prostate adenocarcinomas. Finally, rare human prostate cancer samples showed hemizygous loss of the COP1 gene, loss of COP1 protein, and elevated ETV1 protein while lacking a translocation event. These findings identify COP1 as a tumour suppressor whose downregulation promotes prostatic epithelial cell proliferation and tumorigenesis.
Lavoie,2011 (21565170) Lavoie G, St-Pierre Y "Phosphorylation of human DNMT1: implication of cyclin-dependent kinases." Biochem Biophys Res Commun 2011 Jun 06
DNA methylation plays a central role in the epigenetic regulation of gene expression during development and progression of cancer diseases. The inheritance of specific DNA methylation patterns are acquired in the early embryo and are specifically maintained after cellular replication via the DNA methyltransferase 1 (DNMT1). Recent studies have suggested that the enzymatic activity of DNMT1 is possibly modulated by phosphorylation of serine/threonine residues located in the N-terminal domain of the enzyme. In the present work, we report that cyclin-dependent kinases (CDKs) 1, 2 and 5 can phosphorylate Ser154 of human DNMT1 in vitro. Further evidence of phosphorylation of endogenous DNMT1 at position 154 by CDKs is also found in 293 cells treated with roscovitine, a specific inhibitor of CDK1, 2 and 5. To determine the importance of Ser154 phosphorylation, a mutant of DNMT1 encoding a single-point mutation at position 154 (S154A) was generated. This mutation induced a severe loss of enzymatic activity when compared to wild type DNMT1. Moreover, after treatment with 5-Aza-2'-Deoxycytidine (5-aza-dC), a faster decline in DNMT1 protein level was observed for HEK-293 cells expressing DNMT1(S154A) as compared to cells expressing wild type DNMT1. Our data suggest that phosphorylation of DNMT1 at Ser154 by CDKs is important for enzymatic activity and protein stability of DNMT1. Considering that tumour-associated cell cycle defects are often mediated by alterations in CDK activity, our results suggest that dysregulation of cell cycle via CDKs could induce abnormal phosphorylation of DNMT1 and lead to DNA hypermethylation often observed in cancer cells.
Keshwani,2011 (21561857) Keshwani MM, von Daake S, Newton AC, Harris TK, Taylor SS "Hydrophobic motif phosphorylation is not required for activation loop phosphorylation of p70 ribosomal protein S6 kinase 1 (S6K1)." J Biol Chem 2011 Jun 27
p70 ribosomal protein S6 kinase 1 (S6K1) is regulated by multiple phosphorylation events. Three of these sites are highly conserved among AGC kinases (cAMP dependent Protein Kinase, cGMP dependent Protein Kinase, and Protein Kinase C subfamily): the activation loop in the kinase domain, and two C-terminal sites, the turn motif and the hydrophobic motif. The common dogma has been that phosphorylation of the hydrophobic motif primes S6K1 for the phosphorylation at the activation loop by phosphoinositide-dependent protein kinase 1 (PDK1). Here, we show that the turn motif is, in fact, phosphorylated first, the activation loop second, and the hydrophobic motif is third. Specifically, biochemical analyses of a construct of S6K1 lacking the C-terminal autoinhibitory domain as well as full-length S6K1, reveals that S6K1 is constitutively phosphorylated at the turn motif when expressed in insect cells and becomes phosphorylated in vitro by purified PDK1 at the activation loop. Only the species phosphorylated at the activation loop by PDK1 gets phosphorylated at the hydrophobic motif by mammalian target of rapamycin (mTOR) in vitro. These data are consistent with a previous model in which constitutive phosphorylation of the turn motif provides the key priming step in the phosphorylation of S6K1. The data provide evidence for regulation of S6K1, where hydrophobic motif phosphorylation is not required for PDK1 to phosphorylate S6K1 at the activation loop, but instead activation loop phosphorylation of S6K1 is required for mTOR to phosphorylate the hydrophobic motif of S6K1.
ZeRuth,2011 (21543335) ZeRuth GT, Yang XP, Jetten AM "Modulation of the transactivation function and stability of Kruppel-like zinc finger protein Gli-similar 3 (Glis3) by Suppressor of Fused." J Biol Chem 2011 Jun 20
Glis3 is a member of the Glis subfamily of Kruppel-like zinc finger transcription factors. Recently, Glis3 has been linked to both type I and type II diabetes and shown to positively regulate insulin gene expression. In this study, we have identified a region within the N terminus of Glis3 that shares high levels of homology with the Cubitus interruptus (Ci)/Gli family of proteins. We demonstrated that Glis3 interacts with Suppressor of Fused (SUFU), which involves a VYGHF motif located within this conserved region. We further showed that SUFU is able to inhibit the activation of the insulin promoter by Glis3 but not the activation by a Glis3 mutant deficient in its ability to bind SUFU, suggesting that the inhibitory effect is dependent on the interaction between the two proteins. Exogenous SUFU did not affect the nuclear localization of Glis3; however, Glis3 promoted the nuclear accumulation of SUFU. Additionally, we demonstrated that SUFU stabilizes Glis3 in part by antagonizing the Glis3 association with a Cullin 3-based E3 ubiquitin ligase that promotes the ubiquitination and degradation of Glis3. This is the first reported instance of Glis3 interacting with SUFU and suggests a novel role for SUFU in the modulation of Glis3 signaling. Given the critical role of Glis3 in pancreatic beta-cell generation and maintenance, the elevated Glis3 expression in several cancers, and the established role of SUFU as a tumor suppressor, these data provide further insight into Glis3 regulation and its function in development and disease.
Voordeckers,2011 (21531713) Voordeckers K, Kimpe M, Haesendonckx S, Louwet W, Versele M, Thevelein JM "Yeast 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) Orthologs Pkh1-3 Differentially Regulate Phosphorylation of Protein Kinase A (PKA) and the Protein Kinase B (PKB)/S6K Ortholog Sch9." J Biol Chem 2011 Jun 24
Pkh1, -2, and -3 are the yeast orthologs of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1). Although essential for viability, their functioning remains poorly understood. Sch9, the yeast protein kinase B and/or S6K ortholog, has been identified as one of their targets. We now have shown that in vitro interaction of Pkh1 and Sch9 depends on the hydrophobic PDK1-interacting fragment pocket in Pkh1 and requires the complementary hydrophobic motif in Sch9. We demonstrated that Pkh1 phosphorylates Sch9 both in vitro and in vivo on its PDK1 site and that this phosphorylation is essential for a wild type cell size. In vivo phosphorylation on this site disappeared during nitrogen deprivation and rapidly increased again upon nitrogen resupplementation. In addition, we have shown here for the first time that the PDK1 site in protein kinase A is phosphorylated by Pkh1 in vitro, that this phosphorylation is Pkh-dependent in vivo and occurs during or shortly after synthesis of the protein kinase A catalytic subunits. Mutagenesis of the PDK1 site in Tpk1 abolished binding of the regulatory subunit and cAMP dependence. As opposed to PDK1 site phosphorylation of Sch9, phosphorylation of the PDK1 site in Tpk1 was not regulated by nitrogen availability. These results bring new insight into the control and prevalence of PDK1 site phosphorylation in yeast by Pkh protein kinases.
Park,2011 (21525010) Park H, Valencia-Gallardo C, Sharff A, Tran Van Nhieu G, Izard T "Novel vinculin binding site of the IpaA invasin of Shigella." J Biol Chem 2011 Jun 27
Internalization of Shigella into host epithelial cells, where the bacteria replicates and spreads to neighboring cells, requires a type 3 secretion system (T3SS) effector coined IpaA. IpaA binds directly to and activates the cytoskeletal protein vinculin after injection in the host cell cytosol, and this was previously thought to be directed by two amphipathic alpha-helical vinculin-binding sites (VBS) found in the C-terminal tail domain of IpaA. Here, we report a third VBS, IpaA-VBS3, that is located N-terminal to the other two VBSs of IpaA and show that one IpaA molecule can bind up to three vinculin molecules. Biochemical in vitro Shigella invasion assays and the 1.6 A crystal structure of the vinculin.IpaA-VBS3 complex showed that IpaA-VBS3 is functionally redundant with the other two IpaA-VBSs in cell invasion and in activating the latent F-actin binding functions of vinculin. Multiple VBSs in IpaA are reminiscent of talin, which harbors 11 VBSs. However, most of the talin VBSs have low affinity and are buried in helix bundles, whereas all three of the VBSs of IpaA are high affinity, readily available, and in close proximity to each other in the IpaA structure. Although deletion of IpaA-VBS3 has no detectable effects on Shigella invasion of epithelial cells, deletion of all three VBSs impaired bacterial invasion to levels found in an ipaA null mutant strain. Thus, IpaA-directed mimicry of talin in activating vinculin occurs through three high affinity VBSs that are essential for Shigella pathogenesis.
Schroder,2011 (21520322) Schroder T, Lilie H, Lange C "The myristoylation of guanylate cyclase-activating protein-2 causes an increase in thermodynamic stability in the presence but not in the absence of Ca(2)(+)." Protein Sci 2011 Jun 20
Guanylate cyclase activating protein-2 (GCAP-2) is a Ca(2)(+)-binding protein of the neuronal calcium sensor (NCS) family. Ca(2)(+)-free GCAP-2 activates the retinal rod outer segment guanylate cyclases ROS-GC1 and 2. Native GCAP-2 is N-terminally myristoylated. Detailed structural information on the Ca(2)(+)-dependent conformational switch of GCAP-2 is missing so far, as no atomic resolution structures of the Ca(2)(+)-free state have been determined. The role of the myristoyl moiety remains poorly understood. Available functional data is incompatible with a Ca(2)(+)-myristoyl switch as observed in the prototype NCS protein, recoverin. For the homologous GCAP-1, a Ca(2)(+)-independent sequestration of the myristoyl moiety inside the proteins structure has been proposed. In this article, we compare the thermodynamic stabilities of myristoylated and non-myristoylated GCAP-2 in their Ca(2)(+)-bound and Ca(2)(+)-free forms, respectively, to gain information on the nature of the Ca(2)(+)-dependent conformational switch of the protein and shed some light on the role of its myristoyl group. In the absence of Ca(2)(+), the stability of the myristoylated and non-myristoylated forms was indistinguishable. Ca(2)(+) exerted a stabilizing effect on both forms of the protein, which was significantly stronger for myr GCAP-2. The stability data were corroborated by dye binding experiments performed to probe the solvent-accessible hydrophobic surface of the protein. Our results strongly suggest that the myristoyl moiety is permanently solvent-exposed in Ca(2)(+)-free GCAP-2, whereas it interacts with a hydrophobic part of the protein's structure in the Ca(2)(+)-bound state.
Meitinger,2011 (21498574) Meitinger F, Boehm ME, Hofmann A, Hub B, Zentgraf H, Lehmann WD, Pereira G "Phosphorylation-dependent regulation of the F-BAR protein Hof1 during cytokinesis." Genes Dev 2011 Apr 15
Spatial and timely coordination of cytokinesis is crucial for the maintenance of organelle inheritance and genome integrity. The mitotic exit network (MEN) pathway controls both the timely initiation of mitotic exit and cytokinesis in budding yeast. Here we identified the conserved F-BAR protein Hof1 as a substrate of the MEN kinase complex Dbf2-Mob1 during cytokinesis. We show that polo-like kinase Cdc5 first phosphorylates Hof1 to allow subsequent phosphorylation by Dbf2-Mob1. This releases Hof1 from the septin ring and facilitates Hof1 binding to the medial actomyosin ring (AMR), where Hof1 promotes AMR contraction and membrane ingression. Domain structure analysis established that the central, unstructured, region of Hof1, named the ring localization sequence (RLS), is sufficient to mediate Hof1's binding to the medial ring in a cell cycle-dependent manner. Genetic and functional data support a model in which Dbf2-Mob1 regulates Hof1 by inducing domain rearrangements, leading to the exposure of the Hof1 RLS domain during telophase.
Abe,2011 (21498573) Abe S, Nagasaka K, Hirayama Y, Kozuka-Hata H, Oyama M, Aoyagi Y, Obuse C, Hirota T "The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II." Genes Dev 2011 Apr 18
The cell cycle transition from interphase into mitosis is best characterized by the appearance of condensed chromosomes that become microscopically visible as thread-like structures in nuclei. Biochemically, launching the mitotic program requires the activation of the mitotic cyclin-dependent kinase Cdk1 (cyclin-dependent kinase 1), but whether and how Cdk1 triggers chromosome assembly at mitotic entry are not well understood. Here we report that mitotic chromosome assembly in prophase depends on Cdk1-mediated phosphorylation of the condensin II complex. We identified Thr 1415 of the CAP-D3 subunit as a Cdk1 phosphorylation site, which proved crucial as it was required for the Polo kinase Plk1 (Polo-like kinase 1) to localize to chromosome axes through binding to CAP-D3 and thereby hyperphosphorylate the condensin II complex. Live-cell imaging analysis of cells carrying nonphosphorylatable CAP-D3 mutants in place of endogenous protein suggested that phosphorylation of Thr 1415 is required for timely chromosome condensation during prophase, and that the Plk1-mediated phosphorylation of condensin II facilitates its ability to assemble chromosomes properly. These observations provide an explanation for how Cdk1 induces chromosome assembly in cells entering mitosis, and underscore the significance of the cooperative action of Plk1 with Cdk1.
Arriagada,2011 (21490953) Arriagada G, Muntean LN, Goff SP "SUMO-interacting motifs of human TRIM5alpha are important for antiviral activity." PLoS Pathog 2011 Apr 14
Human TRIM5alpha potently restricts particular strains of murine leukemia viruses (the so-called N-tropic strains) but not others (the B- or NB-tropic strains) during early stages of infection. We show that overexpression of SUMO-1 in human 293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor the mutant R110E of N-MLV CA (a B-tropic switch) are affected by SUMO-1 overexpression. The block occurred prior to reverse transcription and could be abrogated by large amounts of restricted virus. Knockdown of TRIM5alpha in 293T SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral effects, and this loss of restriction could be restored by expression of a human TRIM5alpha shRNA-resistant plasmid. Amino acid sequence analysis of human TRIM5alpha revealed a consensus SUMO conjugation site at the N-terminus and three putative SUMO interacting motifs (SIMs) in the B30.2 domain. Mutations of the TRIM5alpha consensus SUMO conjugation site did not affect the antiviral activity of TRIM5alpha in any of the cell types tested. Mutation of the SIM consensus sequences, however, abolished TRIM5alpha antiviral activity against N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region of the Gag gene reduced the SUMO-1 block and the TRIM5alpha restriction of N-MLV. Our data suggest a novel aspect of TRIM5alpha-mediated restriction, in which the presence of intact SIMs in TRIM5alpha, and also the SUMO conjugation of CA, are required for restriction. We propose that at least a portion of the antiviral activity of TRIM5alpha is mediated through the binding of its SIMs to SUMO-conjugated CA.
Zhang,2011 (21478859) Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, Myer VE, Finan PM, Porter JA, Huang SM, Cong F "RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling." Nat Cell Biol 2011 May
The Wnt/beta-catenin signalling pathway plays essential roles in embryonic development and adult tissue homeostasis, and deregulation of this pathway has been linked to cancer. Axin is a concentration-limiting component of the beta-catenin destruction complex, and its stability is regulated by tankyrase. However, the molecular mechanism by which tankyrase-dependent poly(ADP-ribosyl)ation (PARsylation) is coupled to ubiquitylation and degradation of axin remains undefined. Here, we identify RNF146, a RING-domain E3 ubiquitin ligase, as a positive regulator of Wnt signalling. RNF146 promotes Wnt signalling by mediating tankyrase-dependent degradation of axin. Mechanistically, RNF146 directly interacts with poly(ADP-ribose) through its WWE domain, and promotes degradation of PARsylated proteins. Using proteomics approaches, we have identified BLZF1 and CASC3 as further substrates targeted by tankyrase and RNF146 for degradation. Thus, identification of RNF146 as a PARsylation-directed E3 ligase establishes a molecular paradigm that links tankyrase-dependent PARsylation to ubiquitylation. RNF146-dependent protein degradation may emerge as a major mechanism by which tankyrase exerts its function.
Tong,2011 (21475249) Tong X, Gui H, Jin F, Heck BW, Lin P, Ma J, Fondell JD, Tsai CC "Ataxin-1 and Brother of ataxin-1 are components of the Notch signalling pathway." EMBO Rep 2011 Apr 28
Ataxin-1 (ATXN1), a causative factor for spinocerebellar ataxia type 1 (SCA1), and the related Brother of ATXN1 (BOAT1) are human proteins involved in transcriptional repression. So far, little is known about which transcriptional pathways mediate the effects of ATXN1 and BOAT1. From our analyses of the properties of BOAT1 in Drosophila and of both proteins in mammalian cells, we report here that BOAT1 and ATXN1 are components of the Notch signalling pathway. In Drosophila, BOAT1 compromises the activities of Notch. In mammalian cells, both ATXN1 and BOAT1 bind to the promoter region of Hey1 and inhibit the transcriptional output of Notch through direct interactions with CBF1, a transcription factor that is crucial for the Notch pathway. Our results suggest that, in addition to their involvement in SCA1, ATXN1 and BOAT1 might participate in several Notch-controlled developmental and pathological processes.
Chang,2011 (21474068) Chang CC, Naik MT, Huang YS, Jeng JC, Liao PH, Kuo HY, Ho CC, Hsieh YL, Lin CH, Huang NJ, Naik NM, Kung CC, Lin SY, Chen RH, Chang KS, Huang TH, Shih HM "Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation." Mol Cell 2011 Apr 08
Small ubiquitin-like modifier (SUMO) conjugation and interaction are increasingly associated with various cellular processes. However, little is known about the cellular signaling mechanisms that regulate proteins for distinct SUMO paralog conjugation and interactions. Using the transcriptional coregulator Daxx as a model, we show that SUMO paralog-selective binding and conjugation are regulated by phosphorylation of the Daxx SUMO-interacting motif (SIM). NMR structural studies show that Daxx (732)E-I-I-V-L-S-D-S-D(740) is a bona fide SIM that binds to SUMO-1 in a parallel orientation. Daxx-SIM is phosphorylated by CK2 kinase at residues S737 and S739. Phosphorylation promotes Daxx-SIM binding affinity toward SUMO-1 over SUMO-2/3, causing Daxx preference for SUMO-1 conjugation and interaction with SUMO-1-modified factors. Furthermore, Daxx-SIM phosphorylation enhances Daxx to sensitize stress-induced cell apoptosis via antiapoptotic gene repression. Our findings provide structural insights into the Daxx-SIM:SUMO-1 complex, a model of SIM phosphorylation-enhanced SUMO paralog-selective modification and interaction, and phosphorylation-regulated Daxx function in apoptosis.
Nicholson,2011 (21468693) Nicholson B, Suresh Kumar KG "The multifaceted roles of USP7: new therapeutic opportunities." Cell Biochem Biophys 2011 May 16
The deubiquitylating enzyme USP7 (HAUSP) sits at a critical node regulating the activities of numerous proteins broadly characterized as tumor suppressors, DNA repair proteins, immune responders, viral proteins, and epigenetic modulators. Aberrant USP7 activity may promote oncogenesis and viral disease making it a compelling target for therapeutic intervention. Disclosed drug discovery programs have identified inhibitors of USP7 such as P005091 with cellular proof of concept and anti-proliferative activity in cancer models. Taken together, USP7 inhibitors hold promise as a new strategy for the treatment of disease.
Xu,2011 (21465563) Xu X, Ishima R, Ames JB "Conformational dynamics of recoverin's Ca2+-myristoyl switch probed by 15N NMR relaxation dispersion and chemical shift analysis." Proteins 2011 May 11
Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, serves as a calcium sensor in retinal rod cells. Ca(2+) -induced conformational changes in recoverin promote extrusion of its covalently attached myristate, known as the Ca(2+)-myristoyl switch. Here, we present nuclear magnetic resonance (NMR) relaxation dispersion and chemical shift analysis on (15) N-labeled recoverin to probe main chain conformational dynamics. (15) N NMR relaxation data suggest that Ca(2+)-free recoverin undergoes millisecond conformational dynamics at particular amide sites throughout the protein. The addition of trace Ca(2+) levels (0.05 equivalents) increases the number of residues that show detectable relaxation dispersion. The Ca(2+)-dependent chemical shifts and relaxation dispersion suggest that recoverin has an intermediate conformational state (I) between the sequestered apo state (T) and Ca(2+) saturated extruded state (R): T <--> I <--> R. The first step is a fast conformational equilibrium ([T]/[I] < 100) on the millisecond time scale (tau(ex) deltaomega < 1). The final step (I <--> R) is much slower (tau(ex) deltaomega > 1). The main chain structure of I is similar in part to the structure of half-saturated E85Q recoverin with a sequestered myristoyl group. We propose that millisecond dynamics during T <--> I may transiently increase the exposure of Ca(2+)-binding sites to initiate Ca(2+) binding that drives extrusion of the myristoyl group during I <--> R.
Ma,2011 (21464226) Ma C, Agrawal G, Subramani S "Peroxisome assembly: matrix and membrane protein biogenesis." J Cell Biol 2011 Apr 05
The biogenesis of peroxisomal matrix and membrane proteins is substantially different from the biogenesis of proteins of other subcellular compartments, such as mitochondria and chloroplasts, that are of endosymbiotic origin. Proteins are targeted to the peroxisome matrix through interactions between specific targeting sequences and receptor proteins, followed by protein translocation across the peroxisomal membrane. Recent advances have shed light on the nature of the peroxisomal translocon in matrix protein import and the molecular mechanisms of receptor recycling. Furthermore, the endoplasmic reticulum has been shown to play an important role in peroxisomal membrane protein biogenesis. Defining the molecular events in peroxisome assembly may enhance our understanding of the etiology of human peroxisome biogenesis disorders.
Burton,2011 (21460798) Burton JL, Xiong Y, Solomon MJ "Mechanisms of pseudosubstrate inhibition of the anaphase promoting complex by Acm1." EMBO J 2011 May 04
The anaphase promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators by the 26S proteasome. Cdc20 and Cdh1 are WD40-containing APC co-activators that bind destruction boxes (DB) and KEN boxes within substrates to recruit them to the APC for ubiquitination. Acm1 is an APC(Cdh1) inhibitor that utilizes a DB and a KEN box to bind Cdh1 and prevent substrate binding, although Acm1 itself is not a substrate. We investigated what differentiates an APC substrate from an inhibitor. We identified the Acm1 A-motif that interacts with Cdh1 and together with the DB and KEN box is required for APC(Cdh1) inhibition. A genetic screen identified Cdh1 WD40 domain residues important for Acm1 A-motif interaction and inhibition that appears to reside near Cdh1 residues important for DB recognition. Specific lysine insertion mutations within Acm1 promoted its ubiquitination by APC(Cdh1) whereas lysine removal from the APC substrate Hsl1 converted it into a potent APC(Cdh1) inhibitor. These findings suggest that tight Cdh1 binding combined with the inaccessibility of ubiquitinatable lysines contributes to pseudosubstrate inhibition of APC(Cdh1).
Wlotzka,2011 (21460797) Wlotzka W, Kudla G, Granneman S, Tollervey D "The nuclear RNA polymerase II surveillance system targets polymerase III transcripts." EMBO J 2011 May 04
A key question in nuclear RNA surveillance is how target RNAs are recognized. To address this, we identified in vivo binding sites for nuclear RNA surveillance factors, Nrd1, Nab3 and the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex poly(A) polymerase Trf4, by UV crosslinking. Hit clusters were reproducibly found over known binding sites on small nucleolar RNAs (snoRNAs), pre-mRNAs and cryptic, unstable non-protein-coding RNAs (ncRNAs) ('CUTs'), along with ~642 predicted long anti-sense ncRNAs (asRNAs), ~178 intergenic ncRNAs and, surprisingly, ~1384 mRNAs. Five putative asRNAs tested were confirmed to exist and were stabilized by loss of Nrd1, Nab3 or Trf4. Mapping of micro-deletions and substitutions allowed clear definition of preferred, in vivo Nab3 and Nrd1 binding sites. Nrd1 and Nab3 were believed to be Pol II specific but, unexpectedly, bound many oligoadenylated Pol III transcripts, predominately pre-tRNAs. Depletion of Nrd1 or Nab3 stabilized tested Pol III transcripts and their oligoadenylation was dependent on Nrd1-Nab3 and TRAMP. Surveillance targets were enriched for non-encoded A-rich tails. These were generally very short (1-5 nt), potentially explaining why adenylation destabilizes these RNAs while stabilizing mRNAs with long poly(A) tails.
Nakatsu,2011 (21454638) Nakatsu Y, Sakoda H, Kushiyama A, Zhang J, Ono H, Fujishiro M, Kikuchi T, Fukushima T, Yoneda M, Ohno H, Horike N, Kanna M, Tsuchiya Y, Kamata H, Nishimura F, Isobe T, Ogihara T, Katagiri H, Oka Y, Takahashi S, Kurihara H, Uchida T, Asano T "Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 associates with insulin receptor substrate-1 and enhances insulin actions and adipogenesis." J Biol Chem 2011 Jun 10
Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is a unique enzyme that associates with the pSer/Thr-Pro motif and catalyzes cis-trans isomerization. We identified Pin1 in the immunoprecipitates of overexpressed IRS-1 with myc and FLAG tags in mouse livers and confirmed the association between IRS-1 and Pin1 by not only overexpression experiments but also endogenously in the mouse liver. The analysis using deletion- and point-mutated Pin1 and IRS-1 constructs revealed the WW domain located in the N terminus of Pin1 and Ser-434 in the SAIN (Shc and IRS-1 NPXY binding) domain of IRS-1 to be involved in their association. Subsequently, we investigated the role of Pin1 in IRS-1 mediation of insulin signaling. The overexpression of Pin1 in HepG2 cells markedly enhanced insulin-induced IRS-1 phosphorylation and its downstream events: phosphatidylinositol 3-kinase binding with IRS-1 and Akt phosphorylation. In contrast, the treatment of HepG2 cells with Pin1 siRNA or the Pin1 inhibitor Juglone suppressed these events. In good agreement with these in vitro data, Pin1 knock-out mice exhibited impaired insulin signaling with glucose intolerance, whereas adenoviral gene transfer of Pin1 into the ob/ob mouse liver mostly normalized insulin signaling and restored glucose tolerance. In addition, it was also demonstrated that Pin1 plays a critical role in adipose differentiation, making Pin1 knock-out mice resistant to diet-induced obesity. Importantly, Pin1 expression was shown to be up-regulated in accordance with nutrient conditions such as food intake or a high-fat diet. Taken together, these observations indicate that Pin1 binds to IRS-1 and thereby markedly enhances insulin action, essential for adipogenesis.
Calderwood,2011 (21440926) Calderwood MA, Lee S, Holthaus AM, Blacklow SC, Kieff E, Johannsen E "Epstein-Barr virus nuclear protein 3C binds to the N-terminal (NTD) and beta trefoil domains (BTD) of RBP/CSL; only the NTD interaction is essential for lymphoblastoid cell growth." Virology 2011 May 06
Association of EBV nuclear proteins EBNA2, EBNA3A and EBNA3C with RBP/CSL, is essential for lymphoblastoid cell line (LCL) proliferation. Conserved residues in the EBNA3 homology domain, required for RBP/CSL interaction, lack the WPhiP motif that mediates EBNA2 and Notch binding to the RBP/CSL beta-trefoil domain (BTD). We map RBP/CSL interacting residues within EBNA3A(aa128-204) and EBNA3C(aa211-233). The EBNA3A results are consistent with an earlier report (aa125-222), but the EBNA3C domain is unexpectedly small and includes a "WTP" sequence. This EBNA3C WTP motif confers RBP/CSL binding in vitro, in yeast, and in mammalian cells. Further, an EBNA3C WTP-->STP(W227S) mutation impaired BTD binding whereas EBNA3 homology domain mutations disrupted RBP/CSL N-terminal domain (NTD) binding. WTP was not essential for EBNA3C repression of EBNA2 in reporter assays or for maintenance of LCL growth. Our results indicate that EBNA3 proteins interact with multiple RBP/CSL domains, but only NTD interactions are required for LCL growth.
Feldkamp,2011 (21439835) Feldkamp MD, Yu L, Shea MA "Structural and energetic determinants of apo calmodulin binding to the IQ motif of the Na(V)1.2 voltage-dependent sodium channel." Structure 2011 May 11
The neuronal voltage-dependent sodium channel (Na(v)1.2), essential for generation and propagation of action potentials, is regulated by calmodulin (CaM) binding to the IQ motif in its alpha subunit. A peptide (Na(v)1.2(IQp), KRKQEEVSAIVIQRAYRRYLLKQKVKK) representing the IQ motif had higher affinity for apo CaM than (Ca(2+))(4)-CaM. Association was mediated solely by the C-domain of CaM. A solution structure (2KXW.pdb) of apo (13)C,(15)N-CaM C-domain bound to Na(v)1.2(IQp) was determined with NMR. The region of Na(v)1.2(IQp) bound to CaM was helical; R1902, an Na(v)1.2 residue implicated in familial autism, did not contact CaM. The apo C-domain of CaM in this complex shares features of the same domain bound to myosin V IQ motifs (2IX7) and bound to an SK channel peptide (1G4Y) that does not contain an IQ motif. Thermodynamic and structural studies of CaM-Na(v)1.2(IQp) interactions show that apo and (Ca(2+))(4)-CaM adopt distinct conformations that both permit tight association with Na(v)1.2(IQp) during gating.
Campbell,2011 (21421922) Campbell ID, Humphries MJ "Integrin structure, activation, and interactions." Cold Spring Harb Perspect Biol 2011 Mar
Integrins are large, membrane-spanning, heterodimeric proteins that are essential for a metazoan existence. All members of the integrin family adopt a shape that resembles a large "head" on two "legs," with the head containing the sites for ligand binding and subunit association. Most of the receptor dimer is extracellular, but both subunits traverse the plasma membrane and terminate in short cytoplasmic domains. These domains initiate the assembly of large signaling complexes and thereby bridge the extracellular matrix to the intracellular cytoskeleton. To allow cells to sample and respond to a dynamic pericellular environment, integrins have evolved a highly responsive receptor activation mechanism that is regulated primarily by changes in tertiary and quaternary structure. This review summarizes recent progress in the structural and molecular functional studies of this important class of adhesion receptor.
Luna-Vargas,2011 (21415856) Luna-Vargas MP, Faesen AC, van Dijk WJ, Rape M, Fish A, Sixma TK "Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain." EMBO Rep 2011 Apr 01
USP4 is a member of the ubiquitin-specific protease (USP) family of deubiquitinating enzymes that has a role in spliceosome regulation. Here, we show that the crystal structure of the minimal catalytic domain of USP4 has the conserved USP-like fold with its typical ubiquitin-binding site. A ubiquitin-like (Ubl) domain inserted into the catalytic domain has autoregulatory function. This Ubl domain can bind to the catalytic domain and compete with the ubiquitin substrate, partially inhibiting USP4 activity against different substrates. Interestingly, other USPs, such as USP39, could relieve this inhibition.
Houben,2012 (21413015) Houben R, Adam C, Baeurle A, Hesbacher S, Grimm J, Angermeyer S, Henzel K, Hauser S, Elling R, Brocker EB, Gaubatz S, Becker JC, Schrama D "An intact retinoblastoma protein-binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells." Int J Cancer 2012 Jan 06
Merkel cell carcinoma (MCC) is a highly aggressive skin cancer that frequently harbours Merkel cell polyomavirus (MCV) DNA integrated in the genome of the tumor cells. In our study, we elaborate our recent finding that MCV-positive MCC cell lines require the expression of the viral T antigens (TA). Indeed, in a xeno-transplantation model, we prove that TA expression is essential also in an in vivo situation, as knock down of TA leads to tumor regression. Moreover, rescuing TA short hairpin RNA (shRNA)-treated MCV-positive MCC cells by ectopic expression of shRNA-insensitive TAs clearly demonstrates that the observed effect is caused by TA knockdown. Notably, introduction of a mutation in the LTA protein interfering with LTA binding to the retinoblastoma protein (RB) ablated this rescue. The importance of this interaction was further confirmed as LTA-specific knockdown leads to explicit cell growth inhibition. In summary, the presented data demonstrate that established MCV-positive MCC tumors critically depend on TA expression, in particular the LTA and RB interaction, for sustained tumor growth. Consequently, interference with LTA/RB interaction appears as promising strategy to treat MCC.
Ishihama,2011 (21386030) Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H "Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response." Plant Cell 2011 Apr 27
Mitogen-activated protein kinase (MAPK) cascades have pivotal roles in plant innate immunity. However, downstream signaling of plant defense-related MAPKs is not well understood. Here, we provide evidence that the Nicotiana benthamiana WRKY8 transcription factor is a physiological substrate of SIPK, NTF4, and WIPK. Clustered Pro-directed Ser residues (SP cluster), which are conserved in group I WRKY proteins, in the N-terminal region of WRKY8 were phosphorylated by these MAPKs in vitro. Antiphosphopeptide antibodies indicated that Ser residues in the SP cluster of WRKY8 are phosphorylated by SIPK, NTF4, and WIPK in vivo. The interaction of WRKY8 with MAPKs depended on its D domain, which is a MAPK-interacting motif, and this interaction was required for effective phosphorylation of WRKY8 in plants. Phosphorylation of WRKY8 increased its DNA binding activity to the cognate W-box sequence. The phospho-mimicking mutant of WRKY8 showed higher transactivation activity, and its ectopic expression induced defense-related genes, such as 3-hydroxy-3-methylglutaryl CoA reductase 2 and NADP-malic enzyme. By contrast, silencing of WRKY8 decreased the expression of defense-related genes and increased disease susceptibility to the pathogens Phytophthora infestans and Colletotrichum orbiculare. Thus, MAPK-mediated phosphorylation of WRKY8 has an important role in the defense response through activation of downstream genes.
Ho,2011 (21383157) Ho KC, Zhou Z, She YM, Chun A, Cyr TD, Yang X "Itch E3 ubiquitin ligase regulates large tumor suppressor 1 stability [corrected]." Proc Natl Acad Sci U S A 2011 Mar 23
The large tumor suppressor 1 (LATS1) is a serine/threonine kinase and tumor suppressor found down-regulated in a broad spectrum of human cancers. LATS1 is a central player of the emerging Hippo-LATS suppressor pathway, which plays important roles in cell proliferation, apoptosis, and stem cell differentiation. Despite the ample data supporting a role for LATS1 in tumor suppression, how LATS1 is regulated at the molecular level remains largely unknown. In this study, we have identified Itch, a HECT class E3 ubiquitin ligase, as a unique binding partner of LATS1. Itch can complex with LATS1 both in vitro and in vivo through the PPxY motifs of LATS1 and the WW domains of Itch. Significantly, we found that overexpression of Itch promoted LATS1 degradation by polyubiquitination through the 26S proteasome pathway. On the other hand, knockdown of endogenous Itch by shRNAs provoked stabilization of endogenous LATS1 proteins. Finally, through several functional assays, we also revealed that change of Itch abundance alone is sufficient for altering LATS1-mediated downstream signaling, negative regulation of cell proliferation, and induction of apoptosis. Taking these data together, our study identifies E3 ubiquitin ligase Itch as a unique negative regulator of LATS1 and presents a possibility of targeting LATS1/Itch interaction as a therapeutic strategy in cancer.
Itoh,2011 (21383079) Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M "OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation." J Cell Biol 2011 Mar 08
Macroautophagy is a bulk degradation system conserved in all eukaryotic cells. A ubiquitin-like protein, Atg8, and its homologues are essential for autophagosome formation and act as a landmark for selective autophagy of aggregated proteins and damaged organelles. In this study, we report evidence demonstrating that OATL1, a putative Rab guanosine triphosphatase-activating protein (GAP), is a novel binding partner of Atg8 homologues in mammalian cells. OATL1 is recruited to isolation membranes and autophagosomes through direct interaction with Atg8 homologues and is involved in the fusion between autophagosomes and lysosomes through its GAP activity. We further provide evidence that Rab33B, an Atg16L1-binding protein, is a target substrate of OATL1 and is involved in the fusion between autophagosomes and lysosomes, the same as OATL1. Because both its GAP activity and its Atg8 homologue-binding activity are required for OATL1 to function, we propose a model that OATL1 uses Atg8 homologues as a scaffold to exert its GAP activity and to regulate autophagosomal maturation.
Almonacid,2011 (21376600) Almonacid M, Celton-Morizur S, Jakubowski JL, Dingli F, Loew D, Mayeux A, Chen JS, Gould KL, Clifford DM, Paoletti A "Temporal control of contractile ring assembly by Plo1 regulation of myosin II recruitment by Mid1/anillin." Curr Biol 2011 Mar 22
In eukaryotes, cytokinesis generally involves an actomyosin ring, the contraction of which promotes daughter cell segregation. Assembly of the contractile ring is tightly controlled in space and time. In the fission yeast, contractile ring components are first organized by the anillin-like protein Mid1 into medial cortical nodes. These nodes then coalesce laterally into a functional contractile ring. Although Mid1 is present at the medial cortex throughout G2, recruitment of contractile ring components to nodes starts only at mitotic onset, indicating that this event is cell-cycle regulated. Polo kinases are key temporal coordinators of mitosis and cytokinesis, and the Polo-like kinase Plo1 is known to activate Mid1 nuclear export at mitotic onset, coupling division plane specification to nuclear position. Here we provide evidence that Plo1 also triggers the recruitment of contractile ring components into medial cortical nodes. Plo1 binds at least two independent sites on Mid1, including a consensus site phosphorylated by Cdc2. Plo1 phosphorylates several residues within the first 100 amino acids of Mid1, which directly interact with the IQGAP Rng2, and influences the timing of myosin II recruitment. Plo1 thereby facilitates contractile ring assembly at mitotic onset.
Cargnello,2011 (21372320) Cargnello M, Roux PP "Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases." Microbiol Mol Biol Rev 2011 Mar 04
The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (alpha, beta, gamma, and delta), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Izawa,2011 (21336306) Izawa D, Pines J "How APC/C-Cdc20 changes its substrate specificity in mitosis." Nat Cell Biol 2011 Mar 02
Progress through mitosis requires that the right protein be degraded at the right time. One ubiquitin ligase, the anaphase-promoting complex or cyclosome (APC/C) targets most of the crucial mitotic regulators by changing its substrate specificity throughout mitosis. The spindle assembly checkpoint (SAC) acts on the APC/C co-activator, Cdc20 (cell division cycle 20), to block the degradation of metaphase substrates (for example, cyclin B1 and securin), but not others (for example, cyclin A). How this is achieved is unclear. Here we show that Cdc20 binds to different sites on the APC/C depending on the SAC. Cdc20 requires APC3 and APC8 to bind and activate the APC/C when the SAC is satisfied, but requires only APC8 to bind the APC/C when the SAC is active. Moreover, APC10 is crucial for the destruction of cyclin B1 and securin, but not cyclin A. We conclude that the SAC causes Cdc20 to bind to different sites on the APC/C and this alters APC/C substrate specificity.
Tang,2011 (21328310) Tang XN, Lo CW, Chuang YC, Chen CT, Sun YC, Hong YR, Yang CN "Prediction of the binding mode between GSK3beta and a peptide derived from GSKIP using molecular dynamics simulation." Biopolymers 2011 Apr 26
GSK3beta plays an important role in many physiological functions; dysregulated GSK3beta is involved in human diseases such as diabetes, cancer, and Alzheimer's disease. This study uses MD simulations to determine the interaction between GSK3beta and a peptide derived from GSKIP, a novel GSK3beta interacting protein. Results show that GSKIPtide is inlaid in a binding pocket consisting of an alpha-helix and an extended loop near the carboxy-terminal end. This binding pocket is hydrophobic, and is responsible for the protein-protein interaction of two other GSK3beta interacting proteins: FRAT and Axin. The GSKIPtide binding mode is closer to that of AxinGID (in the Axin-GSK3-interacting domain). The single-point mutations of V267G and Y288F in GSK3beta differentiate the binding modes between GSK3 and GSKIPtide, AxinGID, and FRATide. The V2677G mutation of GSK3beta reduces the GSKIPtide binding affinity by 70% and abolishes the binding affinity with AxinGID, but has no effect on FRATide. However, GSK3beta Y288F completely abolishes the FRATide binding without affecting GSKIPtide or AxinGID binding. An analysis of the GSK3beta-GSKIPtide complex structure and the X-ray crystal structures of GSK3beta-FRATide and GSK3beta-AxinGID complexes suggests that the hydroxyl group of Y288 is crucial to maintaining a hydrogen bond network in GSK3beta-FRATide. The hydrophobic side chain of V267 maintains the integrity of helix-helix ridge-groove hydrophobic interaction for GSK3beta-GSKIPtide and GSK3beta-AxinGID. This study simulates these two mutant systems to provide atomic-level evidence of the aforementioned experimental results and validate the wild-type complex structure prediction.
Hodeify,2011 (21325496) Hodeify R, Tarcsafalvi A, Megyesi J, Safirstein RL, Price PM "Cdk2-dependent phosphorylation of p21 regulates the role of Cdk2 in cisplatin cytotoxicity." Am J Physiol Renal Physiol 2011 May 05
Cisplatin cytotoxicity is dependent on cyclin-dependent kinase 2 (Cdk2) activity in vivo and in vitro. We found that an 18-kDa protein identified by mass spectrometry as p21(WAF1/Cip1) was phosphorylated by Cdk2 starting 12 h after cisplatin exposure. The analysis showed it was phosphorylated at serine 78, a site not previously identified. The adenoviral transduction of p21 before cisplatin exposure protects from cytotoxicity by inhibiting Cdk2. Although cisplatin causes induction of endogenous p21, the protection is inefficient. We hypothesized that phosphorylation of p21 at serine 78 could affect its role as a Cdk inhibitor, and thereby lessen its ability to protect from cisplatin cytotoxicity. To investigate the effect of serine 78 phosphorylation on p21 activity, we replaced serine 78 with aspartic acid, creating the phosphomimic p21(S78D). Mutant p21(S78D) was an inefficient inhibitor of Cdk2 and was inefficient at protecting TKPTS cells from cisplatin-induced cell death. We conclude that phosphorylation of p21 by Cdk2 limits the effectiveness of p21 to inhibit Cdk2, which is the mechanism for continued cisplatin cytotoxicity even after the induction of a protective protein.
Nishi,2011 (21296877) Nishi M, Akutsu H, Masui S, Kondo A, Nagashima Y, Kimura H, Perrem K, Shigeri Y, Toyoda M, Okayama A, Hirano H, Umezawa A, Yamamoto N, Lee SW, Ryo A "A distinct role for Pin1 in the induction and maintenance of pluripotency." J Biol Chem 2011 Apr 1
The prominent characteristics of pluripotent stem cells are their unique capacity to self-renew and pluripotency. Although pluripotent stem cell proliferation is maintained by specific intracellular phosphorylation signaling events, it has not been well characterized how the resulting phosphorylated proteins are subsequently regulated. We here report that the peptidylprolyl isomerase Pin1 is indispensable for the self-renewal and maintenance of pluripotent stem cells via the regulation of phosphorylated Oct4 and other substrates. Pin1 expression was found to be up-regulated upon the induction of induced pluripotent stem (iPS) cells, and the forced expression of Pin1 with defined reprogramming factors was observed to further enhance the frequency of iPS cell generation. The inhibition of Pin1 activity significantly suppressed colony formation and induced the aberrant differentiation of human iPS cells as well as murine ES cells. We further found that Pin1 interacts with the phosphorylated Ser(12)-Pro motif of Oct4 and that this in turn facilitates the stability and transcriptional activity functions of Oct4. Our current findings thus uncover an atypical role for Pin1 as a putative regulator of the induction and maintenance of pluripotency via the control of phosphorylation signaling. These data suggest that the manipulation of Pin1 function could be a potential strategy for the stable induction and proliferation of human iPS cells.
Corti,2011 (21282473) Corti A, Curnis F "Isoaspartate-dependent molecular switches for integrin-ligand recognition." J Cell Sci 2011 Feb 15
Integrins are cell-adhesion receptors that mediate cell-extracellular-matrix (ECM) and cell-cell interactions by recognizing specific ligands. Recent studies have shown that the formation of isoaspartyl residues (isoAsp) in integrin ligands by asparagine deamidation or aspartate isomerization could represent a mechanism for the regulation of integrin-ligand recognition. This spontaneous post-translational modification, which might occur in aged proteins of the ECM, changes the length of the peptide bond and, in the case of asparagine, also of the charge. Although these changes typically have negative effects on protein function, recent studies suggested that isoAsp formation at certain Asn-Gly-Arg (NGR) sites in ECM proteins have a gain-of-function effect, because the resulting isoAsp-Gly-Arg (isoDGR) sequence can mimic Arg-Gly-Asp (RGD), a well-known integrin-binding motif. Substantial experimental evidence suggests that the NGR-to-isoDGR transition can occur in vitro in natural proteins and in drugs containing this motif, thereby promoting integrin recognition and cell adhesion. In this Commentary, we review these studies and discuss the potential effects that isoAsp formation at NGR, DGR and RGD sites might have in the recognition of integrins by natural ligands and by drugs that contain these motifs, as well as their potential biological and pharmacological implications.
Jack,2011 (21281737) Jack BH, Pearson RC, Crossley M "C-terminal binding protein: A metabolic sensor implicated in regulating adipogenesis." Int J Biochem Cell Biol 2011 Mar 30
The development of mature adipocytes from preadipocyte precursor cells requires coordinated changes in gene expression. Management of these expression changes relies on the actions of both DNA-binding transcription factors and their coregulators. Recent studies have identified the corepressor C-terminal binding protein (CtBP) as a key transcriptional coregulator in adipose tissue. CtBP proteins work with several different partner proteins to regulate the development of both white and brown adipocytes. CtBP is of particular interest as it binds to NAD(+)/NADH and may respond to the metabolic state of the cell, thereby linking changes in nutrient levels to transcriptional outcomes.
Kaeser,2011 (21241895) Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Sudhof TC "RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction." Cell 2011 Jan 21
At a synapse, fast synchronous neurotransmitter release requires localization of Ca(2+) channels to presynaptic active zones. How Ca(2+) channels are recruited to active zones, however, remains unknown. Using unbiased yeast two-hybrid screens, we here identify a direct interaction of the central PDZ domain of the active-zone protein RIM with the C termini of presynaptic N- and P/Q-type Ca(2+) channels but not L-type Ca(2+) channels. To test the physiological significance of this interaction, we generated conditional knockout mice lacking all multidomain RIM isoforms. Deletion of RIM proteins ablated most neurotransmitter release by simultaneously impairing the priming of synaptic vesicles and by decreasing the presynaptic localization of Ca(2+) channels. Strikingly, rescue of the decreased Ca(2+)-channel localization required the RIM PDZ domain, whereas rescue of vesicle priming required the RIM N terminus. We propose that RIMs tether N- and P/Q-type Ca(2+) channels to presynaptic active zones via a direct PDZ-domain-mediated interaction, thereby enabling fast, synchronous triggering of neurotransmitter release at a synapse.
Charbonnier,2011 (21238461) Charbonnier S, Nomine Y, Ramirez J, Luck K, Chapelle A, Stote RH, Trave G, Kieffer B, Atkinson RA "The structural and dynamic response of MAGI-1 PDZ1 with noncanonical domain boundaries to the binding of human papillomavirus E6." J Mol Biol 2011 Mar 11
PDZ domains are protein interaction domains that are found in cytoplasmic proteins involved in signaling pathways and subcellular transport. Their roles in the control of cell growth, cell polarity, and cell adhesion in response to cell contact render this family of proteins targets during the development of cancer. Targeting of these network hubs by the oncoprotein E6 of "high-risk" human papillomaviruses (HPVs) serves to effect the efficient disruption of cellular processes. Using NMR, we have solved the three-dimensional solution structure of an extended construct of the second PDZ domain of MAGI-1 (MAGI-1 PDZ1) alone and bound to a peptide derived from the C-terminus of HPV16 E6, and we have characterized the changes in backbone dynamics and hydrogen bonding that occur upon binding. The binding event induces quenching of high-frequency motions in the C-terminal tail of the PDZ domain, which contacts the peptide upstream of the canonical X-[T/S]-X-[L/V] binding motif. Mutations designed in the C-terminal flanking region of the PDZ domain resulted in a significant decrease in binding affinity for E6 peptides. This detailed analysis supports the notion of a global response of the PDZ domain to the binding event, with effects propagated to distal sites, and reveals unexpected roles for the sequences flanking the canonical PDZ domain boundaries.
Vaishnav,2011 (21237154) Vaishnav M, MacFarlane M, Dickens M "Disassembly of the JIP1/JNK molecular scaffold by caspase-3-mediated cleavage of JIP1 during apoptosis." Exp Cell Res 2011 Apr 15
We report here the cleavage of the c-Jun N-terminal Kinase (JNK) pathway scaffold protein, JNK Interacting Protein-1 (JIP1), by caspases during both Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) and staurosporine-induced apoptosis in HeLa cells. During the initiation of apoptosis, maximal JNK activation is observed when JIP1 is intact, whereas cleavage of JIP1 correlates with JNK inactivation and progression of apoptosis. JIP1 is cleaved by caspase-3 at two sites, leading to disassembly of the JIP1/JNK complex. Inhibition of JIP1 cleavage by the caspase-3 inhibitor DEVD.fmk inhibits this disassembly, and is accompanied by sustained JNK activation. These data suggest that TRAIL and staurosporine induce JNK activation in a caspase-3-independent manner and that caspase-3-mediated JIP1 cleavage plays a role in JNK inactivation via scaffold disassembly during the execution phase of apoptosis. Caspase-mediated cleavage of JIP scaffold proteins may therefore represent an important mechanism for modulation of JNK signalling during apoptotic cell death.
Noakes,2011 (21233288) Noakes CJ, Lee G, Lowe M "The PH domain proteins IPIP27A and B link OCRL1 to receptor recycling in the endocytic pathway." Mol Biol Cell 2011 Mar 01
Mutation of the inositol polyphosphate 5-phosphatase OCRL1 results in two disorders in humans, namely Lowe syndrome (characterized by ocular, nervous system, and renal defects) and type 2 Dent disease (in which only the renal symptoms are evident). The disease mechanisms of these syndromes are poorly understood. Here we identify two novel OCRL1-binding proteins, termed inositol polyphosphate phosphatase interacting protein of 27 kDa (IPIP27)A and B (also known as Ses1 and 2), that also bind the related 5-phosphatase Inpp5b. The IPIPs bind to the C-terminal region of these phosphatases via a conserved motif similar to that found in the signaling protein APPL1. IPIP27A and B, which form homo- and heterodimers, localize to early and recycling endosomes and the trans-Golgi network (TGN). The IPIPs are required for receptor recycling from endosomes, both to the TGN and to the plasma membrane. Our results identify IPIP27A and B as key players in endocytic trafficking and strongly suggest that defects in this process are responsible for the pathology of Lowe syndrome and Dent disease.
Jorgensen,2011 (21220508) Jorgensen S, Eskildsen M, Fugger K, Hansen L, Larsen MS, Kousholt AN, Syljuasen RG, Trelle MB, Jensen ON, Helin K, Sorensen CS "SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation." J Cell Biol 2011 Jan 10
The eukaryotic cell cycle is regulated by multiple ubiquitin-mediated events, such as the timely destruction of cyclins and replication licensing factors. The histone H4 methyltransferase SET8 (Pr-Set7) is required for chromosome compaction in mitosis and for maintenance of genome integrity. In this study, we show that SET8 is targeted for degradation during S phase by the CRL4(CDT2) ubiquitin ligase in a proliferating cell nuclear antigen (PCNA)-dependent manner. SET8 degradation requires a conserved degron responsible for its interaction with PCNA and recruitment to chromatin where ubiquitylation occurs. Efficient degradation of SET8 at the onset of S phase is required for the regulation of chromatin compaction status and cell cycle progression. Moreover, the turnover of SET8 is accelerated after ultraviolet irradiation dependent on the CRL4(CDT2) ubiquitin ligase and PCNA. Removal of SET8 supports the modulation of chromatin structure after DNA damage. These results demonstrate a novel regulatory mechanism, linking for the first time the ubiquitin-proteasome system with rapid degradation of a histone methyltransferase to control cell proliferation.
Dancheck,2011 (21218781) Dancheck B, Ragusa MJ, Allaire M, Nairn AC, Page R, Peti W "Molecular investigations of the structure and function of the protein phosphatase 1-spinophilin-inhibitor 2 heterotrimeric complex." Biochemistry 2011 Feb 15
Regulation of the major Ser/Thr phosphatase protein phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry, and small-angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and inhibitor 2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1-spinophilin-I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1-spinophilin and PP1-I-2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1-I-2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multifunctional PP1 holoenzymes.
Ding,2012 (21215488) Ding S, Shi J, Qian W, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F "Regulation of alternative splicing of tau exon 10 by 9G8 and Dyrk1A." Neurobiol Aging 2012 Jul
Adult human brain expresses 6 isoforms of tau protein as a result of alternative splicing. Alternative splicing of exon 10 (E10) leads to tau isoforms containing either 3 (3R-tau) or 4 (4R-tau) microtubule-binding repeats. Imbalance in the 3R-tau/4R-tau ratio causes neurofibrillary degeneration and dementia. Here, we demonstrated that the dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) interacted with the splicing factor 9G8 and phosphorylated it at several serine residues. Dyrk1A itself promoted tau E10 inclusion, whereas 9G8 inhibited E10 inclusion, and these actions were variable depending on the cell types. Coexpression of Dyrk1A and 9G8 led to their translocation from the nucleus to the cytoplasm and suppressed their ability to regulate tau exon 10 splicing. This action is probably due to their interaction-induced translocation from the nucleus, where the regulation of tau E10 splicing occurs, to the cytoplasm. These findings provide novel insights into the molecular mechanism of the regulation of tau E10 splicing and further our understanding of the neurodegeneration caused by dysregulation of tau E10 splicing.
Zhao,2011 (21205866) Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, Guan KL "Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein." Genes Dev 2011 Jan 05
The Yes-associated protein (YAP) is a transcription coactivator that plays a crucial role in organ size control by promoting cell proliferation and inhibiting apoptosis. The Hippo tumor suppressor pathway inhibits YAP through phosphorylation-induced cytoplasmic retention and degradation. Here we report a novel mechanism of YAP regulation by angiomotin (AMOT) family proteins via a direct interaction. Knockdown of AMOT family protein AMOTL2 in polarized Madin-Darby canine kidney (MDCK) cells leads to YAP activation, as indicated by decreased YAP tight junction localization, attenuated YAP phosphorylation, accumulation of nuclear YAP, and induction of YAP target gene expression. Transcriptional coactivator with PDZ-binding motif (TAZ), the YAP paralog, is also regulated by AMOT in a similar fashion. Furthermore, AMOTL2 knockdown results in loss of cell contact inhibition in a manner dependent on the functions of YAP and TAZ. Our results indicate a potential tumor-suppressing role of AMOT family proteins as components of the Hippo pathway, and demonstrate a novel mechanism of YAP and TAZ inhibition by AMOT-mediated tight junction localization. These observations provide a potential link between the Hippo pathway and cell contact inhibition.
Bartlam,2011 (21203959) Bartlam M, Yamamoto T "The structural basis for deadenylation by the CCR4-NOT complex." Protein Cell 2011 Jan 04
The CCR4-NOT complex is a highly conserved, multifunctional machinery controlling mRNA metabolism. Its components have been implicated in several aspects of mRNA and protein expression, including transcription initiation, elongation, mRNA degradation, ubiquitination, and protein modification. In this review, we will focus on the role of the CCR4-NOT complex in mRNA degradation. The complex contains two types of deadenylase enzymes, one belonging to the DEDD-type family and one belonging to the EEP-type family, which shorten the poly(A) tails of mRNA. We will review the present state of structure-function analyses into the CCR4-NOT deadenylases and summarize current understanding of their roles in mRNA degradation. We will also review structural and functional work on the Tob/BTG family of proteins, which are known to interact with the CCR4-NOT complex and which have been reported to suppress deadenylase activity in vitro.
Petersen,2011 (21203436) Petersen K, Qiu JL, Lutje J, Fiil BK, Hansen S, Mundy J, Petersen M "Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function." PLoS One 2011 Jan 04
BACKGROUND: Innate immune signaling pathways in animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. MAP kinase 4 (MPK4) functions downstream of innate immune receptors via a nuclear substrate MKS1 to regulate the activity of the WRKY33 transcription factor, which in turn controls the production of anti-microbial phytoalexins. METHODOLOGY/PRINCIPAL FINDINGS: We investigate the role of MKS1 in basal resistance and the importance of its N- and C-terminal domains for MKS1 function. We used the information that mks1 loss-of-function partially suppresses the mpk4 loss-of-function phenotype, and that transgenic expression of functional MKS1 in mpk4/mks1 double mutants reverted the mpk4 dwarf phenotype. Transformation of mks1/mpk4 with mutant versions of MKS1 constructs showed that a single amino acid substitution in a putative MAP kinase docking domain, MKS1-L32A, or a truncated MKS1 version unable to interact with WRKY33, were deficient in reverting the double mutant to the mpk4 phenotype. These results demonstrate functional requirement in MKS1 for the interaction with MPK4 and WRKY33. In addition, nuclear localization of MKS1 was shown to depend on an intact N-terminal domain. Furthermore, loss-of-function mks1 mutants exhibited increased susceptibility to strains of Pseudomonas syringae and Hyaloperonospora arabidopsidis, indicating that MKS1 plays a role in basal defense responses. CONCLUSIONS: Taken together, our results indicate that MKS1 function and subcellular location requires an intact N-terminus important for both MPK4 and WRKY33 interactions.
Kubota,2011 (21199872) Kubota T, Matsuoka M, Xu S, Otsuki N, Takeda M, Kato A, Ozato K "PIASy inhibits virus-induced and interferon-stimulated transcription through distinct mechanisms." J Biol Chem 2011 Mar 10
The protein inhibitor of activated STAT (PIAS) family proteins regulates innate immune responses by controlling transcription induced by Toll-like receptor, RIG-I-like receptor signaling, and JAK/STAT pathways. Here, we show that PIASy negatively regulates type I interferon (IFN) transcription. Virus infection led to enhanced type I IFN induction in PIASy null cells, and conversely PIASy overexpression reduced IFN transcription. A mutation in the LXXLL motif of the SAP domain abolished inhibition of IFN-stimulated gene expression but did not affect virus or Toll-like receptor/RIG-I-like receptor-stimulated IFN transcription, indicating that PIASy employs distinct mechanisms to inhibit virus-induced and IFN-stimulated transcription. SUMO E3 activity was not required for PIASy inhibition of IFN transcription; however, PIASy relied on the SUMO modification mechanism to inhibit IFN transcription, because the activity of the SUMO-interacting motif was required for inhibition, and knockdown of SUMO E2 enzyme UBC9 decreased inhibitory activity of PIASy. Our results demonstrate that PIASy negatively regulates both IFN transcription and IFN-stimulated gene expression through multiple mechanisms utilizing the function of different domains.
Lai,2011 (21195170) Lai F, Zhou Y, Luo X, Fox J, King ML "Nanos1 functions as a translational repressor in the Xenopus germline." Mech Dev 2011 Feb 14
Nanos family members have been shown to act as translational repressors in the Drosophila and Caenorhabditis elegans germline, but direct evidence is missing for a similar function in vertebrates. Using a tethered function assay, we show that Xenopus Nanos1 is a translational repressor and that association with the RNA is required for this repression. We identified a 14 amino acid region within the N-terminal domain of Nanos1 that is conserved in organisms as diverse as sponge and Human. The region is found in all vertebrates but notably lacking in Drosophila and C. elegans. Deletion and substitution analysis revealed that this conserved region was required for Nanos1 repressive activity. Consistent with this observation, deletion of this region was sufficient to prevent abnormal development that results from ectopic expression of Nanos1 in oocytes. Although Nanos1 can repress capped and polyadenylated RNAs, Nanos1 mediated repression did not require the targeted RNA to have a cap or to be polyadenylated. These results suggest that Nanos1 is capable of repressing translation by several different mechanisms. We found that Nanos1, like Drosophila Nanos, associates with cyclin B1 RNA in vivo indicating that some Nanos targets may be evolutionarily conserved. Nanos1 protein was detected and thus available to repress mRNAs while PGCs were in the endoderm, but was not observed in PGCs after this stage.
Sung,2011 (21192925) Sung KS, Lee YA, Kim ET, Lee SR, Ahn JH, Choi CY "Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53." Exp Cell Res 2011 Mar 14
Homeodomain-interacting protein kinase 2 (HIPK2) is a key regulator of various transcription factors including p53 and CtBP in the DNA damage signaling pathway. PML-nuclear body (NB) is required for HIPK2-mediated p53 phosphorylation at Ser46 and induction of apoptosis. Although PML-NB targeting of HIPK2 has been shown, much is not clear about the molecular mechanism of HIPK2 recruitment to PML-NBs. Here we show that HIPK2 colocalizes specifically with PML-I and PML-IV. Mutational analysis showed that HIPK2 recruitment to PML-IV-NBs is mediated by the SUMO-interaction motifs (SIMs) of both PML-IV and HIPK2. Wild-type HIPK2 associated with SUMO-conjugated PML-IV at a higher affinity than with un-conjugated PML-IV, while the association of a HIPK2 SIM mutant with SUMO-modified PML-IV was impaired. In colony formation assays, HIPK2 strongly suppressed cell proliferation, but HIPK2 SIM mutants did not. In addition, activation and phosphorylation of p53 at the Ser46 residue were impaired by HIPK2 SIM mutants. These results suggest that SIM-mediated HIPK2 targeting to PML-NBs is crucial for HIPK2-mediated p53 activation and induction of apoptosis.
Johansen,2011 (21189453) Johansen T, Lamark T "Selective autophagy mediated by autophagic adapter proteins." Autophagy 2011 May 02
Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ubiquitinated substrates. A direct interaction between these autophagic adapters and the autophagosomal marker protein LC3, mediated by a so-called LIR (LC3-interacting region) motif, their inherent ability to polymerize or aggregate as well as their ability to specifically recognize substrates are required for efficient selective autophagy. These three required features of autophagic cargo receptors are evolutionarily conserved and also employed in the yeast cytoplasm-to-vacuole targeting (Cvt) pathway and in the degradation of P granules in C. elegans. Here, we review the mechanistic basis of selective autophagy in mammalian cells discussing the degradation of misfolded proteins, p62 bodies, aggresomes, mitochondria and invading bacteria. The emerging picture of selective autophagy affecting the regulation of cell signaling with consequences for oxidative stress responses, tumorigenesis and innate immunity is also addressed.
Chan,2011 (21189416) Chan PM, Ng YW, Manser E "A robust protocol to map binding sites of the 14-3-3 interactome: Cdc25C requires phosphorylation of both S216 and S263 to bind 14-3-3." Mol Cell Proteomics 2011 Mar 02
Modern proteomic techniques have identified hundreds of proteins that bind 14-3-3s, the most widespread eukaryotic phosphoserine/threonine sensors, but accurate prediction of the target phospho-sites is difficult. Here we describe a systematic approach using synthetic peptides that tests large numbers of potential binding sites in parallel for human 14-3-3. By profiling the sequence requirements for three diverse 14-3-3 binding sites (from IRS-1, IRSp53 and GIT2), we have generated enhanced bioinformatics tools to score sites and allow more tractable testing by co-immunoprecipitation. This approach has allowed us to identify two additional sites other than Ser216 in the widely studied cell division cycle (Cdc) protein 25C, whose function depends on 14-3-3 binding. These Ser247 and Ser263 sites in human Cdc25C, which were not predicted by the existing Scansite search, are conserved across species and flank the nuclear localization region. Furthermore, we found strong interactions between 14-3-3 and peptides with the sequence Rxx[S/T]xR typical for PKC sites, and which is as abundant as the canonical Rxx[S/T]xP motif in the proteome. Two such sites are required for 14-3-3 binding in the polarity protein Numb. A recent survey of >200 reported sites identified only a handful containing this motif, suggesting that it is currently under-appreciated as a candidate binding site. This approach allows one to rapidly map 14-3-3 binding sites and has revealed alternate motifs.
Okamoto,2011 (21189250) Okamoto Y, Shikano S "Phosphorylation-dependent C-terminal binding of 14-3-3 proteins promotes cell surface expression of HIV co-receptor GPR15." J Biol Chem 2011 Mar 01
Membrane trafficking is dictated by dynamic molecular interactions involving discrete determinants in the cargo proteins and the intracellular transport machineries. We have previously reported that cell surface expression of GPR15, a G protein-coupled receptor (GPCR) that serves as a co-receptor for HIV, is correlated with the mode III binding of 14-3-3 proteins to the receptor C terminus. Here we provide a mechanistic basis for the role of 14-3-3 in promoting the cell surface expression of GPR15. The Ala mutation of penultimate phospho-Ser (S359A) that abolishes 14-3-3 binding resulted in substantially reduced O-glycosylation and the cell surface expression of GPR15. The surface membrane protein CD8 fused with the C-terminal tail of GPR15(S359A) mutant was re-localized in the endoplasmic reticulum (ER). In the context of S359A mutation, the additional mutations in the upstream stretch of basic residues (RXR motif) restored O-glycosylation and the cell surface expression. The RXR motif was responsible for the interaction with coatomer protein I (COPI), which was inversely correlated with the 14-3-3 binding and cell surface expression. These results suggest that 14-3-3 binding promotes cell surface expression of GPR15 by releasing the receptor from ER retrieval/retention pathway that is mediated by the interaction of RXR motif and COPI. Moreover, 14-3-3 binding substantially increased the stability of GPR15 protein. Thus 14-3-3 proteins play multiple roles in biogenesis and trafficking of an HIV co-receptor GPR15 to control its cell surface density in response to the phosphorylation signal.
Chang,2011 (21184736) Chang YI, Hsu SC, Chau GY, Huang CY, Sung JS, Hua WK, Lin WJ "Identification of the methylation preference region in heterogeneous nuclear ribonucleoprotein K by protein arginine methyltransferase 1 and its implication in regulating nuclear/cytoplasmic distribution." Biochem Biophys Res Commun 2011 Jan 21
Protein arginine methylation plays crucial roles in numerous cellular processes. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein participating in a variety of cellular functions including transcription and RNA processing. HnRNP K is methylated at multiple sites in the glycine- and arginine-rich (RGG) motif. Using various RGG domain deletion mutants of hnRNP K as substrates, here we show by direct methylation assay that protein arginine methyltransferase 1 (PRMT1) methylated preferentially in a.a. 280-307 of the RGG motif. Kinetic analysis revealed that deletion of a.a. 280-307, but not a.a. 308-327, significantly inhibited rate of methylation. Importantly, nuclear localization of hnRNP K was significantly impaired in mutant hnRNP K lacking the PRMT1 methylation region or upon pharmacological inhibition of methylation. Together our results identify preferred PRMT1 methylation sequences of hnRNP K by direct methylation assay and implicate a role of arginine methylation in regulating intracellular distribution of hnRNP K.
Panni,2011 (21182200) Panni S, Montecchi-Palazzi L, Kiemer L, Cabibbo A, Paoluzi S, Santonico E, Landgraf C, Volkmer-Engert R, Bachi A, Castagnoli L, Cesareni G "Combining peptide recognition specificity and context information for the prediction of the 14-3-3-mediated interactome in S. cerevisiae and H. sapiens." Proteomics 2011 Jan
Large-scale interaction studies contribute the largest fraction of protein interactions information in databases. However, co-purification of non-specific or indirect ligands, often results in data sets that are affected by a considerable number of false positives. For the fraction of interactions mediated by short linear peptides, we present here a combined experimental and computational strategy for ranking the reliability of the inferred partners. We apply this strategy to the family of 14-3-3 domains. We have first characterized the recognition specificity of this domain family, largely confirming the results of previous analyses, while revealing new features of the preferred sequence context of 14-3-3 phospho-peptide partners. Notably, a proline next to the carboxy side of the phospho-amino acid functions as a potent inhibitor of 14-3-3 binding. The position-specific information about residue preference was encoded in a scoring matrix and two regular expressions. The integration of these three features in a single predictive model outperforms publicly available prediction tools. Next we have combined, by a naive Bayesian approach, these "peptide features" with "protein features", such as protein co-expression and co-localization. Our approach provides an orthogonal reliability assessment and maps with high confidence the 14-3-3 peptide target on the partner proteins.
Cuchet,2010 (21172801) Cuchet D, Sykes A, Nicolas A, Orr A, Murray J, Sirma H, Heeren J, Bartelt A, Everett RD "PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication." J Cell Sci 2010 Dec 28
Intrinsic antiviral resistance mediated by constitutively expressed cellular proteins is one arm of defence against virus infection. Promyelocytic leukaemia nuclear bodies (PML-NBs, also known as ND10) contribute to host restriction of herpes simplex virus type 1 (HSV-1) replication via mechanisms that are counteracted by viral regulatory protein ICP0. ND10 assembly is dependent on PML, which comprises several different isoforms, and depletion of all PML isoforms decreases cellular resistance to ICP0-null mutant HSV-1. We report that individual expression of PML isoforms I and II partially reverses the increase in ICP0-null mutant HSV-1 plaque formation that occurs in PML-depleted cells. This activity of PML isoform I is dependent on SUMO modification, its SUMO interaction motif (SIM), and each element of its TRIM domain. Detailed analysis revealed that the punctate foci formed by individual PML isoforms differ subtly from normal ND10 in terms of composition and/or Sp100 modification. Surprisingly, deletion of the SIM motif from PML isoform I resulted in increased colocalisation with other major ND10 components in cells lacking endogenous PML. Our observations suggest that complete functionality of PML is dependent on isoform-specific C-terminal sequences acting in concert.
Chagot,2011 (21167176) Chagot B, Chazin WJ "Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5." J Mol Biol 2011 Feb 11
The function of the human voltage-gated sodium channel Na(V)1.5 is regulated in part by intracellular calcium signals. The ubiquitous calcium sensor protein calmodulin (CaM) is an important part of the complex calcium-sensing apparatus in Na(V)1.5. CaM interacts with an IQ (isoleucine-glutamine) motif in the large intracellular C-terminal domain of the channel. Using co-expression and co-purification, we have been able to isolate a CaM-IQ motif complex and to determine its high-resolution structure in absence of calcium using multi-dimensional solution NMR. Under these conditions, the Na(V)1.5 IQ motif interacts with the C-terminal domain (C-lobe) of CaM, with the N-terminal domain remaining free in solution. The structure reveals that the C-lobe adopts a semi-open conformation with the IQ motif bound in a narrow hydrophobic groove. Sequence similarities between voltage-gated sodium channels and voltage-gated calcium channels suggest that the structure of the CaM-Na(V)1.5 IQ motif complex can serve as a general model for the interaction between CaM and ion channel IQ motifs under low-calcium conditions. The structure also provides insight into the biochemical basis for disease-associated mutations that map to the IQ motif in Na(V)1.5.
Shamas-Din,2011 (21146563) Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW "BH3-only proteins: Orchestrators of apoptosis." Biochim Biophys Acta 2011 Mar 22
The BH3-only proteins of Bcl-2 family are essential initiators of apoptosis that propagate extrinsic and intrinsic cell death signals. The interaction of BH3-only proteins with other Bcl-2 family members is critical for understanding the core machinery that controls commitment to apoptosis by permeabilizing the mitochondrial outer membrane. BH3-only proteins promote apoptosis by both directly activating Bax and Bak and by suppressing the anti-apoptotic proteins at the mitochondria and the endoplasmic reticulum. To prevent constitutive cell death, BH3-only proteins are regulated by a variety of mechanisms including transcription and post-translational modifications that govern specific protein-protein interactions. Furthermore, BH3-only proteins also control the initiation of autophagy, another important pathway regulating cell survival and death. Emerging evidence indicates that the interaction of BH3-only proteins with membranes regulates binding to other Bcl-2 family members, thereby specifying function. Due to the important role of BH3-only proteins in the regulation of cell death, several promising BH3-mimetic drugs that are active in pre-clinical models are currently being tested as anti-cancer agents. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Davey,2011 (21146412) Davey NE, Trave G, Gibson TJ "How viruses hijack cell regulation." Trends Biochem Sci 2011 Mar 14
Viruses, as obligate intracellular parasites, are the pathogens that have the most intimate relationship with their host, and as such, their genomes have been shaped directly by interactions with the host proteome. Every step of the viral life cycle, from entry to budding, is orchestrated through interactions with cellular proteins. Accordingly, viruses will hijack and manipulate these proteins utilising any achievable mechanism. Yet, the extensive interactions of viral proteomes has yielded a conundrum: how do viruses commandeer so many diverse pathways and processes, given the obvious spatial constraints imposed by their compact genomes? One important approach is slowly being revealed, the extensive mimicry of host protein short linear motifs (SLiMs).
Michishita,2011 (21143559) Michishita M, Morimoto A, Ishii T, Komori H, Shiomi Y, Higuchi Y, Nishitani H "Positively charged residues located downstream of PIP box, together with TD amino acids within PIP box, are important for CRL4(Cdt2) -mediated proteolysis." Genes Cells 2011 Jan
PCNA links Cdt1 and p21 for proteolysis by Cul4-DDB1-Cdt2 (CRL4(Cdt2) ) in the S phase and after DNA damage in mammalian cells. However, other PCNA-interacting proteins, such as ligase I, are not targets of CRL4(Cdt2) . In this study, we created chimera constructs composed of Cdt1 and ligase I and examined how the proteolysis of PCNA-interacting proteins is regulated. Consistent with a recent report using the Xenopus egg system (Havens & Walter 2009), two amino acid elements are also required for degradation in HeLa cells: TD amino acid residues in the PIP box and the basic amino acid at +4 downstream of the PIP box. In addition, we demonstrate that a basic amino acid at +3 is also required for degradation and that an acidic amino acid residue following the basic amino acids abolishes the degradation. Electrostatic surface images suggest that the basic amino acid at +4 is involved in a contact with PCNA, while +3 position extending to opposite direction is important to create a positively charged surface. When all these required elements were introduced in ligase I peptide, the substituted form became degraded. Our results demonstrate that PCNA-dependent degron is strictly composed to avoid illegitimate destruction of PCNA-interacting proteins.
Tan,2011 (21118994) Tan GS, Magurno J, Cooper KF "Ama1p-activated anaphase-promoting complex regulates the destruction of Cdc20p during meiosis II." Mol Biol Cell 2011 Feb 01
The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)-mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/C(Ama1) mediates Cdc20p destruction. APC/C(Ama1) recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/C(Ama1). Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Delta strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/C(Cdc20) activity as the cells complete meiosis II and form spores.
da Fonseca,2011 (21107322) da Fonseca PC, Kong EH, Zhang Z, Schreiber A, Williams MA, Morris EP, Barford D "Structures of APC/C(Cdh1) with substrates identify Cdh1 and Apc10 as the D-box co-receptor." Nature 2011 Feb 10
The ubiquitylation of cell-cycle regulatory proteins by the large multimeric anaphase-promoting complex (APC/C) controls sister chromatid segregation and the exit from mitosis. Selection of APC/C targets is achieved through recognition of destruction motifs, predominantly the destruction (D)-box and KEN (Lys-Glu-Asn)-box. Although this process is known to involve a co-activator protein (either Cdc20 or Cdh1) together with core APC/C subunits, the structural basis for substrate recognition and ubiquitylation is not understood. Here we investigate budding yeast APC/C using single-particle electron microscopy and determine a cryo-electron microscopy map of APC/C in complex with the Cdh1 co-activator protein (APC/C(Cdh1)) bound to a D-box peptide at approximately 10 A resolution. We find that a combined catalytic and substrate-recognition module is located within the central cavity of the APC/C assembled from Cdh1, Apc10--a core APC/C subunit previously implicated in substrate recognition--and the cullin domain of Apc2. Cdh1 and Apc10, identified from difference maps, create a co-receptor for the D-box following repositioning of Cdh1 towards Apc10. Using NMR spectroscopy we demonstrate specific D-box-Apc10 interactions, consistent with a role for Apc10 in directly contributing towards D-box recognition by the APC/C(Cdh1) complex. Our results rationalize the contribution of both co-activator and core APC/C subunits to D-box recognition and provide a structural framework for understanding mechanisms of substrate recognition and catalysis by the APC/C.
Erdmann,2011 (21102557) Erdmann F, Schauble N, Lang S, Jung M, Honigmann A, Ahmad M, Dudek J, Benedix J, Harsman A, Kopp A, Helms V, Cavalie A, Wagner R, Zimmermann R "Interaction of calmodulin with Sec61alpha limits Ca2+ leakage from the endoplasmic reticulum." EMBO J 2011 Jan 5
In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, as formed by Sec61 complexes in the ER membrane, would seriously interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism for intracellular signalling. We identified a calmodulin (CaM)-binding motif in the cytosolic N-terminus of mammalian Sec61alpha that bound CaM but not Ca2+-free apocalmodulin with nanomolar affinity and sequence specificity. In single-channel measurements, CaM potently mediated Sec61-channel closure in Ca2+-dependent manner. At the cellular level, two different CaM antagonists stimulated calcium release from the ER through Sec61 channels. However, protein transport into microsomes was not modulated by Ca2+-CaM. Molecular modelling of the ribosome/Sec61/CaM complexes supports the view that simultaneous ribosome and CaM binding to the Sec61 complex may be possible. Overall, CaM is involved in limiting Ca2+ leakage from the ER.
Wacker,2011 (21102556) Wacker SA, Alvarado C, von Wichert G, Knippschild U, Wiedenmann J, Clauss K, Nienhaus GU, Hameister H, Baumann B, Borggrefe T, Knochel W, Oswald F "RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J." EMBO J 2011 Jan 05
The evolutionarily conserved Notch signal transduction pathway regulates fundamental cellular processes during embryonic development and in the adult. Ligand binding induces presenilin-dependent cleavage of the receptor and a subsequent nuclear translocation of the Notch intracellular domain (NICD). In the nucleus, NICD binds to the recombination signal sequence-binding protein J (RBP-J)/CBF-1 transcription factor to induce expression of Notch target genes. Here, we report the identification and functional characterization of RBP-J interacting and tubulin associated (RITA) (C12ORF52) as a novel RBP-J/CBF-1-interacting protein. RITA is a highly conserved 36 kDa protein that, most interestingly, binds to tubulin in the cytoplasm and shuttles rapidly between cytoplasm and nucleus. This shuttling RITA exports RBP-J/CBF-1 from the nucleus. Functionally, we show that RITA can reverse a Notch-induced loss of primary neurogenesis in Xenopus laevis. Furthermore, RITA is able to downregulate Notch-mediated transcription. Thus, we propose that RITA acts as a negative modulator of the Notch signalling pathway, controlling the level of nuclear RBP-J/CBF-1, where its amounts are limiting.
Sato,2010 (21102411) Sato Y, Shibata H, Nakatsu T, Nakano H, Kashiwayama Y, Imanaka T, Kato H "Structural basis for docking of peroxisomal membrane protein carrier Pex19p onto its receptor Pex3p." EMBO J 2010 Dec 15
Peroxisomes require peroxin (Pex) proteins for their biogenesis. The interaction between Pex3p, which resides on the peroxisomal membrane, and Pex19p, which resides in the cytosol, is crucial for peroxisome formation and the post-translational targeting of peroxisomal membrane proteins (PMPs). It is not known how Pex3p promotes the specific interaction with Pex19p for the purpose of PMP translocation. Here, we present the three-dimensional structure of the complex between a cytosolic domain of Pex3p and the binding-region peptide of Pex19p. The overall shape of Pex3p is a prolate spheroid with a novel fold, the 'twisted six-helix bundle.' The Pex19p-binding site is at an apex of the Pex3p spheroid. A 16-residue region of the Pex19p peptide forms an alpha-helix and makes a contact with Pex3p; this helix is disordered in the unbound state. The Pex19p peptide contains a characteristic motif, consisting of the leucine triad (Leu18, Leu21, Leu22), and Phe29, which are critical for the Pex3p binding and peroxisome biogenesis.
Yang,2011 (21098120) Yang R, Gaidamakov SA, Xie J, Lee J, Martino L, Kozlov G, Crawford AK, Russo AN, Conte MR, Gehring K, Maraia RJ "La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability." Mol Cell Biol 2011 Feb
The conserved RNA binding protein La recognizes UUU-3'OH on its small nuclear RNA ligands and stabilizes them against 3'-end-mediated decay. We report that newly described La-related protein 4 (LARP4) is a factor that can bind poly(A) RNA and interact with poly(A) binding protein (PABP). Yeast two-hybrid analysis and reciprocal immunoprecipitations (IPs) from HeLa cells revealed that LARP4 interacts with RACK1, a 40S ribosome- and mRNA-associated protein. LARP4 cosediments with 40S ribosome subunits and polyribosomes, and its knockdown decreases translation. Mutagenesis of the RNA binding or PABP interaction motifs decrease LARP4 association with polysomes. Several translation and mRNA metabolism-related proteins use a PAM2 sequence containing a critical invariant phenylalanine to make direct contact with the MLLE domain of PABP, and their competition for the MLLE is thought to regulate mRNA homeostasis. Unlike all approximately 150 previously analyzed PAM2 sequences, LARP4 contains a variant PAM2 (PAM2w) with tryptophan in place of the phenylalanine. Binding and nuclear magnetic resonance (NMR) studies have shown that a peptide representing LARP4 PAM2w interacts with the MLLE of PABP within the affinity range measured for other PAM2 motif peptides. A cocrystal of PABC bound to LARP4 PAM2w shows tryptophan in the pocket in PABC-MLLE otherwise occupied by phenylalanine. We present evidence that LARP4 expression stimulates luciferase reporter activity by promoting mRNA stability, as shown by mRNA decay analysis of luciferase and cellular mRNAs. We propose that LARP4 activity is integrated with other PAM2 protein activities by PABP as part of mRNA homeostasis.
Burkhard,2011 (21098038) Burkhard KA, Chen F, Shapiro P "Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity." J Biol Chem 2011 Jan 24
Extracellular signal-regulated kinase-1 and -2 (ERK1/2) proteins regulate a variety of cellular functions, including cell proliferation and differentiation, by interacting with and phosphorylating substrate proteins. Two docking sites, common docking (CD/ED) domain and F-site recruitment site (FRS), on ERK proteins have been identified. Specific interactions with the CD/ED domain and the FRS occur with substrates containing a docking site for ERK and JNK, LXL (DEJL) motif (D-domain) and a docking site for ERK, FXF (DEF) motif (F-site), respectively. However, the relative contributions of the ERK docking sites in mediating substrate interactions that allow efficient phosphate transfer are largely unknown. In these studies, we provide a quantitative analysis of ERK2 interactions with substrates using surface plasmon resonance to measure real time protein-protein interactions. ERK2 interacted with ELK-1 (DEF and DEJL motifs), RSK-1 (DEJL motif), and c-Fos (DEF motif) with K(D) values of 0.25, 0.15, and 0.97 muM, respectively. CD/ED domain mutations inhibited interactions with ELK-1 and RSK-1 by 6-fold but had no effect on interactions with c-Fos. Select mutations in FRS residues differentially inhibited ELK-1 or c-Fos interactions with ERK2 but had little effect on RSK-1 interactions. Mutations in both the ED and FRS docking sites completely inhibited ELK-1 interactions but had no effect on interactions with stathmin, an ERK substrate whose docking site is unknown. The phosphorylation status of ERK2 did not affect interactions with RSK-1 or c-Fos but did inhibit interactions with ELK-1 and stathmin. These studies provide a quantitative evaluation of specific docking domains involved in mediating interactions between ERK2 and protein substrates and define the contributions of these interactions to phosphate transfer.
Zhao,2010 (21084559) Zhao B, Li L, Guan KL "Hippo signaling at a glance." J Cell Sci 2010 Nov 18
Im,2010 (21070952) Im YJ, Kuo L, Ren X, Burgos PV, Zhao XZ, Liu F, Burke TR Jr, Bonifacino JS, Freed EO, Hurley JH "Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction." Structure 2010 Nov 12
Budding of HIV-1 requires the binding of the PTAP late domain of the Gag p6 protein to the UEV domain of the TSG101 subunit of ESCRT-I. The normal function of this motif in cells is in receptor downregulation. Here, we report the 1.4-1.6 A structures of the human TSG101 UEV domain alone and with wild-type and mutant HIV-1 PTAP and Hrs PSAP nonapeptides. The hydroxyl of the Thr or Ser residue in the P(S/T)AP motif hydrogen bonds with the main chain of Asn69. Mutation of the Asn to Pro, blocking the main-chain amide, abrogates PTAP motif binding in vitro and blocks budding of HIV-1 from cells. N69P and other PTAP binding-deficient alleles of TSG101 did not rescue HIV-1 budding. However, the mutant alleles did rescue downregulation of endogenous EGF receptor. This demonstrates that the PSAP motif is not rate determining in EGF receptor downregulation under normal conditions.
Ma,2010 (21070949) Ma W, Shang Y, Wei Z, Wen W, Wang W, Zhang M "Phosphorylation of DCC by ERK2 is facilitated by direct docking of the receptor P1 domain to the kinase." Structure 2010 Nov 12
Netrin receptor DCC plays critical roles in many cellular processes, including axonal outgrowth and migration, angiogenesis, and apoptosis, but the molecular basis of DCC-mediated signaling is largely unclear. ERK2, a member of the MAPK family, is one of the few proteins known to be involved in DCC-mediated signaling. Here, we report that ERK2 directly interacts with DCC, and the ERK2-binding region was mapped to the conserved intracellular P1 domain of the receptor. The structure of ERK2 in complex with the P1 domain of DCC reveals that DCC contains a MAPK docking motif. The docking of the P1 domain onto ERK2 physically positions several phosphorylation sites of DCC in the vicinity of the kinase active site. We further show that the docking interaction between the P1 domain and ERK2 is essential for the ERK2-mediated phosphorylation of DCC. We conclude that DCC signaling is directly coupled with MAPK signaling cascades.
Nagashima,2011 (21068219) Nagashima S, Takahashi M, Jirintai, Tanaka T, Yamada K, Nishizawa T, Okamoto H "A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells." J Gen Virol 2011 Feb
We have previously demonstrated that the release of hepatitis E virus (HEV) from infected cells depended on ORF3 protein, which harbours one or two PSAP motifs. To elucidate the PSAP motif(s) in the ORF3 protein during virion egress, five PSAP mutants derived from an infectious genotype 3 cDNA clone of pJE03-1760F/wt that can grow efficiently in PLC/PRF/5 cells were analysed. Four mutants, including mutLSAP, mutPSAL, mutLSAL (the substituted amino acids in the authentic PSAP motif are underlined) and mutPLAP/PSAP (the changed amino acid in the additional PSAP motif is underlined) generated progenies as efficiently as the wild-type virus. Conversely, the HEV RNA level in the culture supernatant of mutPLAP/LSAL RNA-transfected cells was significantly lower than in cells transfected with the wild-type RNA, similar to an ORF3-null mutant. Consistent with the ORF3-deficient mutant, the mutPLAP/LSAL mutant with no intact PSAP motifs banded at 1.26-1.27 g ml(-1) in sucrose, and was captured by anti-ORF2, but not by anti-ORF3, with or without prior treatment with detergent (0.1 % sodium deoxycholate). The absence of the ORF3 protein on the mutant particles in the culture supernatant was confirmed by Western blotting, despite the expression of ORF3 protein in the RNA-transfected cells, as detected by immunofluorescence and Western blotting. Therefore, at least one of the two intact PSAP motifs in the ORF3 protein is required for the formation of membrane-associated HEV particles possessing ORF3 proteins on their surface, thus suggesting that the PSAP motif plays a role as a functional domain for HEV budding.
Huntzinger,2010 (21063388) Huntzinger E, Braun JE, Heimstadt S, Zekri L, Izaurralde E "Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing." EMBO J 2010 Dec 15
miRNA-mediated gene silencing requires the GW182 proteins, which are characterized by an N-terminal domain that interacts with Argonaute proteins (AGOs), and a C-terminal silencing domain (SD). In Drosophila melanogaster (Dm) GW182 and a human (Hs) orthologue, TNRC6C, the SD was previously shown to interact with the cytoplasmic poly(A)-binding protein (PABPC1). Here, we show that two regions of GW182 proteins interact with PABPC1: the first contains a PABP-interacting motif 2 (PAM2; as shown before for TNRC6C) and the second contains the M2 and C-terminal sequences in the SD. The latter mediates indirect binding to the PABPC1 N-terminal domain. In D. melanogaster cells, the second binding site dominates; however, in HsTNRC6A-C the PAM2 motif is essential for binding to both Hs and DmPABPC1. Accordingly, a single amino acid substitution in the TNRC6A-C PAM2 motif abolishes the interaction with PABPC1. This mutation also impairs TNRC6s silencing activity. Our findings reveal that despite species-specific differences in the relative strength of the PABPC1-binding sites, the interaction between GW182 proteins and PABPC1 is critical for miRNA-mediated silencing in animal cells.
Ku,2011 (21060336) Ku B, Liang C, Jung JU, Oh BH "Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX." Cell Res 2011 Apr 07
Interactions between the BCL-2 family proteins determine the cell's fate to live or die. How they interact with each other to regulate apoptosis remains as an unsettled central issue. So far, the antiapoptotic BCL-2 proteins are thought to interact with BAX weakly, but the physiological significance of this interaction has been vague. Herein, we show that recombinant BCL-2 and BCL-w interact potently with a BCL-2 homology (BH) 3 domain-containing peptide derived from BAX, exhibiting the dissociation constants of 15 and 23 nM, respectively. To clarify the basis for this strong interaction, we determined the three-dimensional structure of a complex of BCL-2 with a BAX peptide spanning its BH3 domain. It revealed that their interactions extended beyond the canonical BH3 domain and involved three nonconserved charged residues of BAX. A novel BAX variant, containing the alanine substitution of these three residues, had greatly impaired affinity for BCL-2 and BCL-w, but was otherwise indistinguishable from wild-type BAX. Critically, the apoptotic activity of the BAX variant could not be restrained by BCL-2 and BCL-w, pointing that the observed tight interactions are critical for regulating BAX activation. We also comprehensively quantified the binding affinities between the three BCL-2 subfamily proteins. Collectively, the data show that due to the high affinity of BAX for BCL-2, BCL-w and A1, and of BAK for BCL-X(L), MCL-1 and A1, only a subset of BH3-only proteins, commonly including BIM, BID and PUMA, could be expected to free BAX or BAK from the antiapoptotic BCL-2 proteins to elicit apoptosis.
Aranda,2011 (21048044) Aranda S, Laguna A, de la Luna S "DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles." FASEB J 2011 Feb
Dual-specificity tyrosine-regulated kinases (DYRKs) comprise a family of protein kinases within the CMGC group of the eukaryotic kinome. Members of the DYRK family are found in 4 (animalia, plantae, fungi, and protista) of the 5 main taxa or kingdoms, and all DYRK proteins studied to date share common structural, biochemical, and functional properties with their ancestors in yeast. Recent work on DYRK proteins indicates that they participate in several signaling pathways critical for developmental processes and cell homeostasis. In this review, we focus on the DYRK family of proteins from an evolutionary, biochemical, and functional point of view and discuss the most recent, relevant, and controversial contributions to the study of these kinases.
Kaustov,2011 (21047797) Kaustov L, Ouyang H, Amaya M, Lemak A, Nady N, Duan S, Wasney GA, Li Z, Vedadi M, Schapira M, Min J, Arrowsmith CH "Recognition and specificity determinants of the human cbx chromodomains." J Biol Chem 2011 Jan 03
The eight mammalian Cbx proteins are chromodomain-containing proteins involved in regulation of heterochromatin, gene expression, and developmental programs. They are evolutionarily related to the Drosophila HP1 (dHP1) and Pc (dPc) proteins that are key components of chromatin-associated complexes capable of recognizing repressive marks such as trimethylated Lys-9 and Lys-27, respectively, on histone H3. However, the binding specificity and function of the human homologs, Cbx1-8, remain unclear. To this end we employed structural, biophysical, and mutagenic approaches to characterize the molecular determinants of sequence contextual methyllysine binding to human Cbx1-8 proteins. Although all three human HP1 homologs (Cbx1, -3, -5) replicate the structural and binding features of their dHP counterparts, the five Pc homologs (Cbx2, -4, -6, -7, -8) bind with lower affinity to H3K9me3 or H3K27me3 peptides and are unable to distinguish between these two marks. Additionally, peptide permutation arrays revealed a greater sequence tolerance within the Pc family and suggest alternative nonhistone sequences as potential binding targets for this class of chromodomains. Our structures explain the divergence of peptide binding selectivity in the Pc subfamily and highlight previously unrecognized features of the chromodomain that influence binding and specificity.
Aylon,2010 (21041410) Aylon Y, Ofir-Rosenfeld Y, Yabuta N, Lapi E, Nojima H, Lu X, Oren M "The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1." Genes Dev 2010 Nov 02
Apoptosis is an important mechanism to eliminate potentially tumorigenic cells. The tumor suppressor p53 plays a pivotal role in this process. Many tumors harbor mutant p53, but others evade its tumor-suppressive effects by altering the expression of proteins that regulate the p53 pathway. ASPP1 (apoptosis-stimulating protein of p53-1) is a key mediator of the nuclear p53 apoptotic response. Under basal conditions, ASPP1 is cytoplasmic. We report that, in response to oncogenic stress, the tumor suppressor Lats2 (large tumor suppressor 2) phosphorylates ASPP1 and drives its translocation into the nucleus. Together, Lats2 and ASPP1 shunt p53 to proapoptotic promoters and promote the death of polyploid cells. These effects are overridden by the Yap1 (Yes-associated protein 1) oncoprotein, which disrupts Lats2-ASPP1 binding and antagonizes the tumor-suppressing function of the Lats2/ASPP1/p53 axis.
Boussetta,2010 (20956805) Boussetta T, Gougerot-Pocidalo MA, Hayem G, Ciappelloni S, Raad H, Arabi Derkawi R, Bournier O, Kroviarski Y, Zhou XZ, Malter JS, Lu PK, Bartegi A, Dang PM, El-Benna J "The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils." Blood 2010 Dec 23
Neutrophils play a key role in host defense by releasing reactive oxygen species (ROS). However, excessive ROS production by neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can damage bystander tissues, thereby contributing to inflammatory diseases. Tumor necrosis factor-alpha (TNF-alpha), a major mediator of inflammation, does not activate NADPH oxidase but induces a state of hyperresponsiveness to subsequent stimuli, an action known as priming. The molecular mechanisms by which TNF-alpha primes the NADPH oxidase are unknown. Here we show that Pin1, a unique cis-trans prolyl isomerase, is a previously unrecognized regulator of TNF-alpha-induced NADPH oxidase hyperactivation. We first showed that Pin1 is expressed in neutrophil cytosol and that its activity is markedly enhanced by TNF-alpha. Inhibition of Pin1 activity with juglone or with a specific peptide inhibitor abrogated TNF-alpha-induced priming of neutrophil ROS production induced by N-formyl-methionyl-leucyl-phenylalanine peptide (fMLF). TNF-alpha enhanced fMLF-induced Pin1 and p47phox translocation to the membranes and juglone inhibited this process. Pin1 binds to p47phox via phosphorylated Ser345, thereby inducing conformational changes that facilitate p47phox phosphorylation on other sites by protein kinase C. These findings indicate that Pin1 is critical for TNF-alpha-induced priming of NADPH oxidase and for excessive ROS production. Pin1 inhibition could potentially represent a novel anti-inflammatory strategy.
Chan,2011 (20945341) Chan SW, Lim CJ, Chen L, Chong YF, Huang C, Song H, Hong W "The Hippo pathway in biological control and cancer development." J Cell Physiol 2011 Jan 26
The Hippo pathway is an evolutionally conserved protein kinase cascade involved in regulating organ size in vivo and cell contact inhibition in vitro by governing cell proliferation and apoptosis. Deregulation of the Hippo pathway is linked to cancer development. Its first core kinase Warts was identified in Drosophila more than 15 years ago, but it gained much attention when other core components of the pathway were identified 8 years later. Major discoveries of the pathway were made during past several years. The core kinase components Hippo, Salvador, Warts, and Mats in the fly and Mst1/2, WW45, Lats1/2, and Mob1 in mammals phosphorylate and inactivate downstream transcriptional co-activators Yorkie in the fly, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in mammals, respectively. Phosphorylated Yorkie, YAP, and TAZ are sequestered in the cytoplasm by interaction with 14-3-3 proteins. Here we review recent progresses of this pathway by focusing on how these proteins communicate with each other and how loss of regulation results in cancers.
Jeshtadi,2010 (20943972) Jeshtadi A, Burgos P, Stubbs CD, Parker AW, King LA, Skinner MA, Botchway SW "Interaction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy." J Virol 2010 Nov 24
Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 +/- 0.1 ns to 2.1 +/- 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.
Matthess,2010 (20937773) Matthess Y, Raab M, Sanhaji M, Lavrik IN, Strebhardt K "Cdk1/cyclin B1 controls Fas-mediated apoptosis by regulating caspase-8 activity." Mol Cell Biol 2010 Nov 24
Caspase activation is a hallmark of apoptosis. However, the molecular mechanisms underlying the regulation of caspase-8 activation within the extrinsic death pathway are not well understood. In this study, we demonstrate that procaspase-8 is phosphorylated in mitotic cells by Cdk1/cyclin B1 on Ser-387, which is located at the N terminus of the catalytic subunit p10. This phosphorylation of procaspase-8 on Ser-387 occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes. Furthermore, RNA interference-mediated silencing of cyclin B1 or treatment with the Cdk1 inhibitor RO-3306 enhances the Fas-mediated activation and processing of procaspase-8 in mitotic cells. A nonphosphorylatable procaspase-8 (S387A) facilitates Fas-induced apoptosis during mitosis. Our findings suggest that Cdk1/cyclin B1 activity shields human cells against extrinsic death stimuli and unravel the molecular details of the cross talk between cell cycle and extrinsic apoptotic pathways. Finally, this new mechanism may also contribute to tumorigenesis.
Visser,2010 (20935475) Visser S, Yang X "LATS tumor suppressor: a new governor of cellular homeostasis." Cell Cycle 2010 Oct 27
Accumulating evidence points to the LATS (Large Tumor Suppressor) family of human tumor suppressors (LATS1 and LATS2) as new resident governors of cellular homeostasis. Loss of function of either LATS1 or LATS2 leads to a variety of tumor types including soft tissue sarcomas, leukemia, as well as breast, prostate, lung and esophageal cancers. Due to their high degree of homology and functional overlap, LATS1 and LATS2 comprise a new tumor suppressor family. Classically identified within the Hippo-LATS signaling pathway, LATS also acts independently of this pathway, possessing multiple functions including regulation of cell proliferation, cell death and cell migration, as well as broad governing roles such as transcriptional regulation and maintenance of genetic stability. Activity of LATS is tightly controlled through various mechanisms including post-translational modifications, differential localization and expression. Although little is known about the specific underlying mechanisms of these activities, current data suggest that LATS signaling intersects with well-established tumor suppressive or oncogenic pathways including the p53, Ras or Akt networks. This review aims to identify what we know about the LATS tumor suppressor family, highlighting LATS1 and LATS2 redundancies and differences in terms of their structure, expression, regulation and functions, thereby establishing a novel tumor suppressor network.
Yang,2010 (20934435) Yang J, Phiel C "Functions of B56-containing PP2As in major developmental and cancer signaling pathways." Life Sci 2010 Nov 29
Members of the B'/B56/PR61 family regulatory subunits of PP2A determine the subcellular localization, substrate specificity, and catalytic activity of PP2A in a wide range of biological processes. Here, we summarize the structure and intracellular localization of B56-containing PP2As and review functions of B56-containing PP2As in several major developmental/cancer signaling pathways.
Centore,2010 (20932472) Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, Tse A, Jin J, Dyson NJ, Walter JC, Zou L "CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase." Mol Cell 2010 Oct 8
The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4(Cdt2). Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4(Cdt2) leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4(Cdt2)-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin compaction during DNA synthesis.
Sheard,2010 (20927106) Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N "Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor." Nature 2010 Nov 18
Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.
Sriram,2010 (20924402) Sriram SM, Kwon YT "The molecular principles of N-end rule recognition." Nat Struct Mol Biol 2010 Oct 06
The N-end rule pathway is a proteolytic system in which recognition components (N-recognins) recognize a set of N-terminal residues as part of degradation signals (N-degrons). Two studies in this issue report the structures of Ubr boxes, a substrate recognition domain of eukaryotic N-recognins. We discuss how eukaryotic and prokaryotic N-recognins use a similar molecular principle to recognize a different set of N-degrons.
Mitchell,2011 (20920535) Mitchell DJ, Butcher NJ, Minchin RF "Phosphorylation/dephosphorylation of human SULT4A1: role of Erk1 and PP2A." Biochim Biophys Acta 2011 Jan
SULT4A1 is a cytosolic sulfotransferase that shares little homology with other human sulfotransferases but is highly conserved between species. It is found in neurons located in several regions of the brain. Recently, the stability of SULT4A1 was shown to be regulated by Pin1, a peptidyl-prolyl cis-trans isomerase implicated in several neurodegenerative diseases. Since Pin1 binds preferentially to phosphoproteins, these findings suggested that SULT4A1 is post-translationally modified. In this study, we show that the Thr(11) residue of SULT4A1, which is involved in Pin1 binding is phosphorylated. MEK inhibition was shown to abolish Pin1 mediated degradation of SULT4A1 while in vitro phosphorylation assays using alanine substitution mutants of SULT4A1 demonstrated phosphorylation of Thr(11) by ERK1. We also show that dephosphorylation was catalyzed by the protein phosphatase 2A. The PP2A regulatory subunit, Bbeta was identified from a yeast-2-hybrid screen of human brain cDNA as a SULT4A1 interacting protein. This was further confirmed by GST pull-downs and immunoprecipitation. Other members of the B subunit (alphadeltagamma) did not interact with SULT4A1. Taken together, these studies indicate that SULT4A1 stability is regulated by post-translational modification that involves the ERK pathway and PP2A. The phosphorylation of SULT4A1 allows interaction with Pin1, which then promotes degradation of the sulfotransferase.
Sillibourne,2010 (20920249) Sillibourne JE, Bornens M "Polo-like kinase 4: the odd one out of the family." Cell Div 2010 Oct 13
Polo-like kinase 4 (PLK4) is a unique member of the Polo-like family of kinases that shares little homology with its siblings and has an essential role in centriole duplication. The turn-over of this kinase must be strictly controlled to prevent centriole amplification. This is achieved, in part, by an autoregulatory mechanism, whereby PLK4 autophosphorylates residues in a PEST sequence located carboxy-terminal to its catalytic domain. Phosphorylated PLK4 is subsequently recognized by the SCF complex, ubiquitinylated and targeted to the proteasome for degradation. Recent data have also shown that active PLK4 is restricted to the centrosome, a mechanism that could serve to prevent aberrant centriole assembly elsewhere in the cell. While significant advances have been made in understanding how PLK4 is regulated it is certain that additional regulatory mechanisms exist to safeguard the fidelity of centriole duplication. Here, we overview past and present data discussing the regulation and functions of PLK4.
Zhao,2010 (20890132) Zhao X, Jin S, Song Y, Zhan Q "Cdc2/cyclin B1 regulates centrosomal Nlp proteolysis and subcellular localization." Cancer Biol Ther 2010 Dec 29
The formation of proper mitotic spindles is required for appropriate chromosome segregation during cell division. Aberrant spindle formation often causes aneuploidy and results in tumorigenesis. However, the underlying mechanism of regulating spindle formation and chromosome separation remains to be further defined. Centrosomal Nlp (ninein-like protein) is a recently characterized BRCA1-regulated centrosomal protein and plays an important role in centrosome maturation and spindle formation. In this study, we show that Nlp can be phosphorylated by cell cycle protein kinase Cdc2/cyclin B1. The phosphorylation sites of Nlp are mapped at Ser185 and Ser589. Interestingly, the Cdc2/cyclin B1 phosphorylation site Ser185 of Nlp is required for its recognition by PLK1, which enable Nlp depart from centrosomes to allow the establishment of a mitotic scaffold at the onset of mitosis . PLK1 fails to dissociate the Nlp mutant lacking Ser185 from centrosome, suggesting that Cdc2/cyclin B1 might serve as a primary kinase of PLK1 in regulating Nlp subcellular localization. However, the phosphorylation at the site Ser589 by Cdc2/cyclin B1 plays an important role in Nlp protein stability probably due to its effect on protein degradation. Furthermore, we show that deregulated expression or subcellular localization of Nlp lead to multinuclei in cells, indicating that scheduled levels of Nlp and proper subcellular localization of Nlp are critical for successful completion of normal cell mitosis, These findings demonstrate that Cdc2/cyclin B1 is a key regulator in maintaining appropriate degradation and subcellular localization of Nlp, providing novel insights into understanding on the role of Cdc2/cyclin B1 in mitotic progression.
Xu,2010 (20889502) Xu D, Yao Y, Lu L, Costa M, Dai W "Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1alpha." J Biol Chem 2010 Dec 06
Polo-like kinase 3 (Plk3) plays an important role in the regulation of cell cycle progression and stress responses. Plk3 also has a tumor-suppressing activity as aging PLK3-null mice develop tumors in multiple organs. The growth of highly vascularized tumors in PLK3-null mice suggests a role for Plk3 in angiogenesis and cellular responses to hypoxia. By studying primary isogenic murine embryonic fibroblasts, we tested the hypothesis that Plk3 functions as a component in the hypoxia signaling pathway. PLK3(-/-) murine embryonic fibroblasts contained an enhanced level of HIF-1alpha under hypoxic conditions. Immunoprecipitation and pulldown analyses revealed that Plk3 physically interacted with HIF-1alpha under hypoxia. Purified recombinant Plk3, but not a kinase-defective mutant, phosphorylated HIF-1alpha in vitro, resulting in a major mobility shift. Mass spectrometry identified two unique serine residues that were phosphorylated by Plk3. Moreover, ectopic expression followed by cycloheximide or pulse-chase treatment demonstrated that phospho-mutants exhibited a much longer half-life than the wild-type counterpart, strongly suggesting that Plk3 directly regulates HIF-1alpha stability in vivo. Combined, our study identifies Plk3 as a new and essential player in the regulation of the hypoxia signaling pathway.
Bolanos-Garcia,2011 (20888775) Bolanos-Garcia VM, Blundell TL "BUB1 and BUBR1: multifaceted kinases of the cell cycle." Trends Biochem Sci 2011 Mar 14
The multidomain protein kinases BUB1 and BUBR1 (Mad3 in yeast, worms and plants) are central components of the mitotic checkpoint for spindle assembly (SAC). This evolutionarily conserved and essential self-monitoring system of the eukaryotic cell cycle ensures the high fidelity of chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bi-oriented on the mitotic spindle. Despite their amino acid sequence conservation and similar domain organization, BUB1 and BUBR1 perform different functions in the SAC. Recent structural information provides crucial molecular insights into the regulation and recognition of BUB1 and BUBR1, and a solid foundation to dissect the roles of these proteins in the control of chromosome segregation in normal and oncogenic cells.
Oka,2010 (20868367) Oka T, Remue E, Meerschaert K, Vanloo B, Boucherie C, Gfeller D, Bader GD, Sidhu SS, Vandekerckhove J, Gettemans J, Sudol M "Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling." Biochem J 2010 Nov 26
The Hippo pathway regulates the size of organs by controlling two opposing processes: proliferation and apoptosis. YAP2 (Yes kinase-associated protein 2), one of the three isoforms of YAP, is a WW domain-containing transcriptional co-activator that acts as the effector of the Hippo pathway in mammalian cells. In addition to WW domains, YAP2 has a PDZ-binding motif at its C-terminus. We reported previously that this motif was necessary for YAP2 localization in the nucleus and for promoting cell detachment and apoptosis. In the present study, we show that the tight junction protein ZO (zonula occludens)-2 uses its first PDZ domain to form a complex with YAP2. The endogenous ZO-2 and YAP2 proteins co-localize in the nucleus. We also found that ZO-2 facilitates the nuclear localization and pro-apoptotic function of YAP2, and that this activity of ZO-2 is PDZ-domain-dependent. The present paper is the first report on a PDZ-based nuclear translocation mechanism. Moreover, since the Hippo pathway acts as a tumour suppressor pathway, the YAP2-ZO-2 complex could represent a target for cancer therapy.
Whisenant,2010 (20865152) Whisenant TC, Ho DT, Benz RW, Rogers JS, Kaake RM, Gordon EA, Huang L, Baldi P, Bardwell L "Computational prediction and experimental verification of new MAP kinase docking sites and substrates including Gli transcription factors." PLoS Comput Biol 2010 Sep 24
In order to fully understand protein kinase networks, new methods are needed to identify regulators and substrates of kinases, especially for weakly expressed proteins. Here we have developed a hybrid computational search algorithm that combines machine learning and expert knowledge to identify kinase docking sites, and used this algorithm to search the human genome for novel MAP kinase substrates and regulators focused on the JNK family of MAP kinases. Predictions were tested by peptide array followed by rigorous biochemical verification with in vitro binding and kinase assays on wild-type and mutant proteins. Using this procedure, we found new 'D-site' class docking sites in previously known JNK substrates (hnRNP-K, PPM1J/PP2Czeta), as well as new JNK-interacting proteins (MLL4, NEIL1). Finally, we identified new D-site-dependent MAPK substrates, including the hedgehog-regulated transcription factors Gli1 and Gli3, suggesting that a direct connection between MAP kinase and hedgehog signaling may occur at the level of these key regulators. These results demonstrate that a genome-wide search for MAP kinase docking sites can be used to find new docking sites and substrates.
Heinzelmann,2010 (20861242) Heinzelmann K, Scholz BA, Nowak A, Fossum E, Kremmer E, Haas J, Frank R, Kempkes B "Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 (vIRF4/K10) is a novel interaction partner of CSL/CBF1, the major downstream effector of Notch signaling." J Virol 2010 Nov 04
In cells infected with the Kaposi's sarcoma-associated herpesvirus (KSHV), CSL/CBF1 signaling is essential for viral replication and promotes the survival of KSHV-infected cells. CSL/CBF1 is a DNA adaptor molecule which recruits coactivator and corepressor complexes to regulate viral and cellular gene transcription and which is a major downstream effector molecule of activated Notch. The interaction of KSHV RTA and LANA with CSL/CBF1 has been shown to balance the lytic and latent viral life cycle. Here we report that a third KSHV protein, viral interferon regulatory factor 4 (vIRF4/K10), but none of the three other KSHV-encoded vIRFs, interacts with CSL/CBF1. Two regions of vIRF4 with dissimilar affinities contribute to CSL/CBF1 binding. Similar to Notch, vIRF4 targets the hydrophobic pocket in the beta trefoil domain of CSL/CBF1 through a short peptide motif which closely resembles a motif found in Notch but does not strictly follow the PhiWPhiP consensus conserved in human and mouse Notch proteins. Our results suggest that vIRF4 might compete with Notch for CSL/CBF1 binding and signaling.
Matta-Camacho,2010 (20835242) Matta-Camacho E, Kozlov G, Li FF, Gehring K "Structural basis of substrate recognition and specificity in the N-end rule pathway." Nat Struct Mol Biol 2010 Oct 06
The N-end rule links the half-life of a protein to the identity of its N-terminal residue. Destabilizing N-terminal residues are recognized by E3 ubiquitin ligases, termed N-recognins. A conserved structural domain called the UBR box is responsible for their specificity. Here we report the crystal structures of the UBR boxes of the human N-recognins UBR1 and UBR2, alone and in complex with an N-end rule peptide, Arg-Ile-Phe-Ser. These structures show that the UBR box adopts a previously undescribed fold stabilized through the binding of three zinc ions to form a binding pocket for type 1 N-degrons. NMR experiments reveal a preference for N-terminal arginine. Peptide binding is abrogated by N-terminal acetylation of the peptide or loss of the positive charge of the N-terminal residue. These results rationalize and refine the empirical rules for the classification of type 1 N-degrons. We also confirm that a missense mutation in UBR1 that is responsible for Johanson-Blizzard syndrome leads to UBR box unfolding and loss of function.
Choi,2010 (20835240) Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, Eck MJ, Song HK "Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases." Nat Struct Mol Biol 2010 Oct 06
The N-end rule pathway is a regulated proteolytic system that targets proteins containing destabilizing N-terminal residues (N-degrons) for ubiquitination and proteasomal degradation in eukaryotes. The N-degrons of type 1 substrates contain an N-terminal basic residue that is recognized by the UBR box domain of the E3 ubiquitin ligase UBR1. We describe structures of the UBR box of Saccharomyces cerevisiae UBR1 alone and in complex with N-degron peptides, including that of the cohesin subunit Scc1, which is cleaved and targeted for degradation at the metaphase-anaphase transition. The structures reveal a previously unknown protein fold that is stabilized by a novel binuclear zinc center. N-terminal arginine, lysine or histidine side chains of the N-degron are coordinated in a multispecific binding pocket. Unexpectedly, the structures together with our in vitro biochemical and in vivo pulse-chase analyses reveal a previously unknown modulation of binding specificity by the residue at position 2 of the N-degron.
Shibata,2010 (20834162) Shibata H, Inuzuka T, Yoshida H, Sugiura H, Wada I, Maki M "The ALG-2 binding site in Sec31A influences the retention kinetics of Sec31A at the endoplasmic reticulum exit sites as revealed by live-cell time-lapse imaging." Biosci Biotechnol Biochem 2010 Sep 30
ALG-2, a member of the penta-EF-hand protein family, interacts Ca(2)+-dependently with a COPII component, Sec31A. In this study, we first established HeLa cells stably expressing green fluorescent protein-fused ALG-2 (GFP-ALG-2) and red fluorescent protein-fused Sec31A (Sec31A-RFP). After inducing Ca(2)+-mobilization, the cytoplasmic distribution of GFP-ALG-2 changed from a diffuse to a punctate pattern, which extensively overlapped with the Sec31A-RFP-positive structures, indicating that ALG-2 is recruited to the endoplasmic reticulum exit sites (ERES) in living cells. Next, overlay experiments with biotin-labeled ALG-2 were done to dissect the ALG-2 binding site (ABS). They revealed that a sequence comprising amino acid residues 839-851 in the Pro-rich region was necessary and sufficient for direct binding to ALG-2. Finally, fluorescence recovery after photobleaching analysis indicated that the ABS deletion reduced the high-affinity population of Sec31A to the ERES, suggesting that the ABS is one of the key determinants of the retention kinetics of Sec31A at ERES.
Schumacher,2010 (20823509) Schumacher B, Skwarczynska M, Rose R, Ottmann C "Structure of a 14-3-3sigma-YAP phosphopeptide complex at 1.15 A resolution." Acta Crystallogr Sect F Struct Biol Cryst Commun 2010 Sep 08
The 14-3-3 proteins are a class of eukaryotic acidic adapter proteins, with seven isoforms in humans. 14-3-3 proteins mediate their biological function by binding to target proteins and influencing their activity. They are involved in pivotal pathways in the cell such as signal transduction, gene expression, enzyme activation, cell division and apoptosis. The Yes-associated protein (YAP) is a WW-domain protein that exists in two transcript variants of 48 and 54 kDa in humans. By transducing signals from the cytoplasm to the nucleus, YAP is important for transcriptional regulation. In both variants, interaction with 14-3-3 proteins after phosphorylation of Ser127 is important for nucleocytoplasmic trafficking, via which the localization of YAP is controlled. In this study, 14-3-3sigma has been cloned, purified and crystallized in complex with a phosphopeptide from the YAP 14-3-3-binding domain, which led to a crystal that diffracted to 1.15 A resolution. The crystals belonged to space group C222(1), with unit-cell parameters a=82.3, b=112.1, c=62.9 A.
Liu,2010 (20818375) Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK, Cheng EH, Hsieh JJ "Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint." Nature 2010 Sep 16
Cell cycle checkpoints are implemented to safeguard the genome, avoiding the accumulation of genetic errors. Checkpoint loss results in genomic instability and contributes to the evolution of cancer. Among G1-, S-, G2- and M-phase checkpoints, genetic studies indicate the role of an intact S-phase checkpoint in maintaining genome integrity. Although the basic framework of the S-phase checkpoint in multicellular organisms has been outlined, the mechanistic details remain to be elucidated. Human chromosome-11 band-q23 translocations disrupting the MLL gene lead to poor prognostic leukaemias. Here we assign MLL as a novel effector in the mammalian S-phase checkpoint network and identify checkpoint dysfunction as an underlying mechanism of MLL leukaemias. MLL is phosphorylated at serine 516 by ATR in response to genotoxic stress in the S phase, which disrupts its interaction with, and hence its degradation by, the SCF(Skp2) E3 ligase, leading to its accumulation. Stabilized MLL protein accumulates on chromatin, methylates histone H3 lysine 4 at late replication origins and inhibits the loading of CDC45 to delay DNA replication. Cells deficient in MLL showed radioresistant DNA synthesis and chromatid-type genomic abnormalities, indicative of S-phase checkpoint dysfunction. Reconstitution of Mll(-/-) (Mll also known as Mll1) mouse embryonic fibroblasts with wild-type but not S516A or DeltaSET mutant MLL rescues the S-phase checkpoint defects. Moreover, murine myeloid progenitor cells carrying an Mll-CBP knock-in allele that mimics human t(11;16) leukaemia show a severe radioresistant DNA synthesis phenotype. MLL fusions function as dominant negative mutants that abrogate the ATR-mediated phosphorylation/stabilization of wild-type MLL on damage to DNA, and thus compromise the S-phase checkpoint. Together, our results identify MLL as a key constituent of the mammalian DNA damage response pathway and show that deregulation of the S-phase checkpoint incurred by MLL translocations probably contributes to the pathogenesis of human MLL leukaemias.
Pawlowski,2010 (20818336) Pawlowski R, Rajakyla EK, Vartiainen MK, Treisman R "An actin-regulated importin alpha/beta-dependent extended bipartite NLS directs nuclear import of MRTF-A." EMBO J 2010 Oct 20
Myocardin-related transcription factors (MRTFs) are actin-regulated transcriptional coactivators, which bind G-actin through their N-terminal RPEL domains. In response to signal-induced actin polymerisation and concomitant G-actin depletion, MRTFs accumulate in the nucleus and activate target gene transcription through their partner protein SRF. Nuclear accumulation of MRTFs in response to signal is inhibited by increased G-actin level. Here, we study the mechanism by which MRTF-A enters the nucleus. We show that MRTF-A contains an unusually long bipartite nuclear localisation signal (NLS), comprising two basic elements separated by 30 residues, embedded within the RPEL domain. Using siRNA-mediated protein depletion in vivo, and nuclear import assays in vitro, we show that the MRTF-A extended bipartite NLS uses the importin (Imp)alpha/beta-dependent import pathway, and that import is inhibited by G-actin. Interaction of the NLS with the Impalpha-Impbeta heterodimer requires both NLS basic elements, and is dependent on the Impalpha major and minor binding pockets. Binding of the Impalpha-Impbeta heterodimer to the intact MRTF-A RPEL domain occurs competitively with G-actin. Thus, MRTF-A contains an actin-sensitive nuclear import signal.
Ma,2010 (20816748) Ma J, Martin JD, Xue Y, Lor LA, Kennedy-Wilson KM, Sinnamon RH, Ho TF, Zhang G, Schwartz B, Tummino PJ, Lai Z "C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site." Arch Biochem Biophys 2010 Sep 29
USP7, also known as the hepes simplex virus associated ubiquitin-specific protease (HAUSP), deubiquitinates both mdm2 and p53, and plays an important role in regulating the level and activity of p53. Here, we report that deletion of the TRAF-like domain at the N-terminus of USP7, previously reported to contain the mdm2/p53 binding site, has no effect on USP7 mediated deubiquitination of Ub(n)-mdm2 and Ub(n)-p53. Amino acids 208-1102 were identified to be the minimal length of USP7 that retains proteolytic activity, similar to full length enzyme, towards not only a truncated model substrate Ub-AFC, but also Ub(n)-mdm2, Ub(n)-p53. In contrast, the catalytic domain of USP7 (amino acids 208-560) has 50-700 fold less proteolytic activity towards different substrates. Moreover, inhibition of the catalytic domain of USP7 by Ubal is also different from the full length or TRAF-like domain deleted proteins. Using glutathione pull-down methods, we demonstrate that the C-terminal domain of USP7 contains additional binding sites, a.a. 801-1050 and a.a. 880-1050 for mdm2 and p53, respectively. The additional USP7 binding site on mdm2 is mapped to be the C-terminal RING finger domain (a.a. 425-491). We propose that the C-terminal domain of USP7 is responsible for maintaining the active conformation for catalysis and inhibitor binding, and contains the prime side of the proteolytic active site.
Ivanov,2010 (20813839) Ivanov SS, Charron G, Hang HC, Roy CR "Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins." J Biol Chem 2010 Nov 05
The intracellular human pathogen Legionella pneumophila translocates multiple proteins in the host cytosol known as effectors, which subvert host cellular processes to create a membrane-bound organelle that supports bacterial replication. It was observed that several Legionella effectors encode a prototypical eukaryotic prenylation CAAX motif (where C represents a cysteine residue and A denotes an aliphatic amino acid). These bacterial motifs mediated posttranslational modification of effector proteins resulting in the addition of either a farnesyl or geranylgeranyl isoprenyl lipid moiety to the cysteine residue of the CAAX tetrapeptide. Lipidation enhanced membrane affinity for most Legionella CAAX motif proteins and facilitated the localization of these effector proteins to host organelles. Host farnesyltransferase and class I geranylgeranyltransferase were both involved in the lipidation of the Legionella CAAX motif proteins. Perturbation of the host prenylation machinery during infection adversely affected the remodeling of the Legionella-containing vacuole. Thus, these data indicate that Legionella utilize the host prenylation machinery to facilitate targeting of effector proteins to membrane-bound organelles during intracellular infection.
Nair,2010 (20807815) Nair BC, Nair SS, Chakravarty D, Challa R, Manavathi B, Yew PR, Kumar R, Tekmal RR, Vadlamudi RK "Cyclin-dependent kinase-mediated phosphorylation plays a critical role in the oncogenic functions of PELP1." Cancer Res 2010 Sep 16
Estrogen receptor (ER) signaling plays an important role in breast cancer progression, and ER functions are influenced by coregulatory proteins. PELP1 (proline-, glutamic acid-, and leucine-rich protein 1) is a nuclear receptor coregulator that plays an important role in ER signaling. Its expression is deregulated in hormonal cancers. We identified PELP1 as a novel cyclin-dependent kinase (CDK) substrate. Using site-directed mutagenesis and in vitro kinase assays, we identified Ser(477) and Ser(991) of PELP1 as CDK phosphorylation sites. Using the PELP1 Ser(991) phospho-specific antibody, we show that PELP1 is hyperphosphorylated during cell cycle progression. Model cells stably expressing the PELP1 mutant that lack CDK sites had defects in estradiol (E2)-mediated cell cycle progression and significantly affected PELP1-mediated oncogenic functions in vivo. Mechanistic studies showed that PELP1 modulates transcription factor E2F1 transactivation functions, that PELP1 is recruited to pRb/E2F target genes, and that PELP1 facilitates ER signaling cross talk with cell cycle machinery. We conclude that PELP1 is a novel substrate of interphase CDKs and that its phosphorylation is important for the proper function of PELP1 in modulating hormone-driven cell cycle progression and also for optimal E2F transactivation function. Because the expression of both PELP1 and CDKs is deregulated in breast tumors, CDK-PELP1 interactions will have implications in breast cancer progression.
Rebowski,2010 (20804767) Rebowski G, Namgoong S, Boczkowska M, Leavis PC, Navaza J, Dominguez R "Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation." J Mol Biol 2010 Oct 04
Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin beta4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin beta4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.
Astuti,2010 (20801879) Astuti P, Boutros R, Ducommun B, Gabrielli B "Mitotic phosphorylation of Cdc25B Ser321 disrupts 14-3-3 binding to the high affinity Ser323 site." J Biol Chem 2010 Nov 01
Cdc25B is a key regulator of entry into mitosis, and its activity and localization are regulated by binding of the 14-3-3 dimer. There are three 14-3-3 binding sites on Cdc25B, with Ser(323) being the highest affinity binding and is highly homologous to the Ser(216) 14-3-3 binding site on Cdc25C. Loss of 14-3-3 binding to Ser(323) increases cyclin/Cdk substrate access to the catalytic site, thereby increasing its activity. It also affects the localization of Cdc25B. Thus, phosphorylation and 14-3-3 binding to this site is essential for down-regulating Cdc25B activity, blocking its mitosis promoting function. The question of how this inhibitory signal is relieved to allow Cdc25B activation and entry into mitosis is yet to be resolved. Here, we show that Ser(323) phosphorylation is maintained into mitosis, but phosphorylation of Ser(321) disrupts 14-3-3 binding to Ser(323), mimicking the effect of inhibiting Ser(323) phosphorylation on both Cdc25B activity and localization. The unphosphorylated Ser(321) appears to have a role in stabilizing 14-3-3 binding to Ser(323), and loss of the Ser hydroxyl group appears to be sufficient to significantly reduce 14-3-3 binding. A consequence of loss of 14-3-3 binding is dephosphorylation of Ser(323). Ser(321) is phosphorylated in mitosis by Cdk1. The mitotic phosphorylation of Ser(321) acts to maintain full activation of Cdc25B by disrupting 14-3-3 binding to Ser(323) and enhancing the dephosphorylation of Ser(323) to block 14-3-3 binding to this site.
Magli,2010 (20801874) Magli A, Angelelli C, Ganassi M, Baruffaldi F, Matafora V, Battini R, Bachi A, Messina G, Rustighi A, Del Sal G, Ferrari S, Molinari S "Proline isomerase Pin1 represses terminal differentiation and myocyte enhancer factor 2C function in skeletal muscle cells." J Biol Chem 2010 Nov 5
Reversible proline-directed phosphorylation at Ser/Thr-Pro motifs has an essential role in myogenesis, a multistep process strictly regulated by several signaling pathways that impinge on two families of myogenic effectors, the basic helix-loop-helix myogenic transcription factors and the MEF2 (myocyte enhancer factor 2) proteins. The question of how these signals are deciphered by the myogenic effectors remains largely unaddressed. In this study, we show that the peptidyl-prolyl isomerase Pin1, which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, acts as an inhibitor of muscle differentiation because its knockdown in myoblasts promotes myotube formation. With the aim of clarifying the mechanism of Pin1 function in skeletal myogenesis, we investigated whether MEF2C, a critical regulator of the myogenic program that is the end point of several signaling pathways, might serve as a/the target for the inhibitory effects of Pin1 on muscle differentiation. We show that Pin1 interacts selectively with phosphorylated MEF2C in skeletal muscle cells, both in vitro and in vivo. The interaction with Pin1 requires two novel critical phospho-Ser/Thr-Pro motifs in MEF2C, Ser(98) and Ser(110), which are phosphorylated in vivo. Overexpression of Pin1 decreases MEF2C stability and activity and its ability to cooperate with MyoD to activate myogenic conversion. Collectively, these findings reveal a novel role for Pin1 as a regulator of muscle terminal differentiation and suggest that Pin1-mediated repression of MEF2C function could contribute to this function.
Matic,2010 (20797634) Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal AC "Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif." Mol Cell 2010 Aug 27
Reversible protein modification by small ubiquitin-like modifiers (SUMOs) is critical for eukaryotic life. Mass spectrometry-based proteomics has proven effective at identifying hundreds of potential SUMO target proteins. However, direct identification of SUMO acceptor lysines in complex samples by mass spectrometry is still very challenging. We have developed a generic method for the identification of SUMO acceptor lysines in target proteins. We have identified 103 SUMO-2 acceptor lysines in endogenous target proteins. Of these acceptor lysines, 76 are situated in the SUMOylation consensus site [VILMFPC]KxE. Interestingly, eight sites fit the inverted SUMOylation consensus motif [ED]xK[VILFP]. In addition, we found direct mass spectrometric evidence for crosstalk between SUMOylation and phosphorylation with a preferred spacer between the SUMOylated lysine and the phosphorylated serine of four residues. In 16 proteins we identified a hydrophobic cluster SUMOylation motif (HCSM). SUMO conjugation of RanGAP1 and ZBTB1 via HCSMs is remarkably efficient.
White-Adams,2010 (20796202) White-Adams TC, Berny MA, Patel IA, Tucker EI, Gailani D, Gruber A, McCarty OJ "Laminin promotes coagulation and thrombus formation in a factor XII-dependent manner." J Thromb Haemost 2010 Jun
BACKGROUND: Laminin is the most abundant non-collagenous protein in the basement membrane. Recent studies have shown that laminin supports platelet adhesion, activation and aggregation under flow conditions, highlighting a possible role for laminin in hemostasis. OBJECTIVE: To investigate the ability of laminin to promote coagulation and support thrombus formation under shear. RESULTS AND METHODS: Soluble laminin accelerated factor (F) XII activation in a purified system, and shortened the clotting time of recalcified plasma in a FXI- and FXII-dependent manner. Laminin promoted phosphatidylserine exposure on platelets and supported platelet adhesion and fibrin formation in recalcified blood under shear flow conditions. Fibrin formation in laminin-coated capillaries was abrogated by an antibody that interferes with FXI activation by activated FXII, or an antibody that blocks activated FXI activation of FIX. CONCLUSION: This study identifies a role for laminin in the initiation of coagulation and the formation of platelet-rich thrombi under shear conditions in a FXII-dependent manner.
Deshmukh,2010 (20739287) Deshmukh L, Gorbatyuk V, Vinogradova O "Integrin {beta}3 phosphorylation dictates its complex with the Shc phosphotyrosine-binding (PTB) domain." J Biol Chem 2010 Nov 5
Adaptor protein Shc plays a key role in mitogen-activated protein kinase (MAPK) signaling pathway, which can be mediated through a number of different receptors including integrins. By specifically recognizing the tyrosine-phosphorylated integrin beta(3), Shc has been shown to trigger integrin outside-in signaling, although the structural basis of this interaction remains nebulous. Here we present the detailed structural analysis of Shc phosphotyrosine-binding (PTB) domain in complex with the bi-phosphorylated beta(3)integrin cytoplasmic tail (CT). We show that this complex is primarily defined by the phosphorylation state of the integrin C-terminal Tyr(759), which fits neatly into the classical PTB pocket of Shc. In addition, we have identified a novel binding interface which concurrently accommodates phosphorylated Tyr(747) of the highly conserved NPXY motif of beta(3). The structure represents the first snapshot of an integrin cytoplasmic tail bound to a target for mediating the outside-in signaling. Detailed comparison with the known Shc PTB structure bound to a target TrkA peptide revealed some significant differences, which shed new light upon the PTB domain specificity.
Caride,2010 (20731332) Caride AJ, Bennett RD, Strehler EE "Kinetic analysis reveals differences in the binding mechanism of calmodulin and calmodulin-like protein to the IQ motifs of myosin-10." Biochemistry 2010 Sep 21
Myo10 is an unconventional myosin with important functions in filopodial motility, cell migration, and cell adhesion. The neck region of Myo10 contains three IQ motifs that bind calmodulin (CaM) or the tissue-restricted calmodulin-like protein (CLP) as light chains. However, little is known about the mechanism of light chain binding to the IQ motifs in Myo10. Binding of CaM and CLP to each IQ motif was assessed by nondenaturing gel electrophoresis and by stopped-flow experiments using fluorescence-labeled CaM and CLP. Although the binding kinetics are different in each case, there are similarities in the mechanism of binding of CaM and CLP to IQ1 and IQ2: for both IQ motifs Ca(2+) increased the binding affinity, mainly by increasing the rate of the forward steps. The general kinetic mechanism comprises a two-step process, which in some cases may involve the binding of a second IQ motif with lower affinity. For IQ3, however, the kinetics of CaM binding is very different from that of CLP. In both cases, binding in the absence of Ca(2+) is poor, and addition of Ca(2+) decreases the K(d) to below 10 nM. However, while the CaM binding kinetics are complex and best fitted by a multistep model, binding of CLP is fitted by a relatively simple two-step model. The results show that, in keeping with growing structural evidence, complexes between CaM or CaM-like myosin light chains and IQ motifs are highly diverse and depend on the specific sequence of the particular IQ motif as well as the light chain.
Odho,2010 (20716525) Odho Z, Southall SM, Wilson JR "Characterization of a novel WDR5-binding site that recruits RbBP5 through a conserved motif to enhance methylation of histone H3 lysine 4 by mixed lineage leukemia protein-1." J Biol Chem 2010 Oct 18
Histone modification is well established as a fundamental mechanism driving the regulation of transcription, replication, and DNA repair through the control of chromatin structure. Likewise, it is apparent that incorrect targeting of histone modifications contributes to misregulated gene expression and hence to developmental disorders and diseases of genomic instability such as cancer. The KMT2 family of SET domain methyltransferases, typified by mixed lineage leukemia protein-1 (MLL1), is responsible for histone H3 lysine 4 methylation, a marker of active genes. To ensure that this modification is correctly targeted, a multiprotein complex associates with the methyltransferase and directs activity. We have identified a novel interaction site on the core complex protein WD repeat protein-5 (WDR5), and we mapped the complementary site on its partner retinoblastoma-binding protein-5 (RbBP5). We have characterized this interaction by x-ray crystallography and show how it is fundamental to the assembly of the complex and to the regulation of methyltransferase activity. We show which region of RbBP5 contributes directly to mixed lineage leukemia activation, and we combine our structural and biochemical data to produce a model to show how WDR5 and RbBP5 act cooperatively to stimulate activity.
Sarkari,2010 (20713061) Sarkari F, La Delfa A, Arrowsmith CH, Frappier L, Sheng Y, Saridakis V "Further insight into substrate recognition by USP7: structural and biochemical analysis of the HdmX and Hdm2 interactions with USP7." J Mol Biol 2010 Oct 04
Ubiquitin-specific protease 7 (USP7) catalyzes the deubiquitination of several substrate proteins including p53 and Hdm2. We have previously shown that USP7, and more specifically its amino-terminal domain (USP7-NTD), interacts with distinct regions on p53 and Hdm2 containing P/AxxS motifs. The ability of USP7 to also deubiquitinate and control the turnover of HdmX was recently demonstrated. We utilized a combination of biochemistry and structural biology to identify which domain of USP7 interacts with HdmX as well as to identify regions of HdmX that interact with USP7. We showed that USP7-NTD recognized two of six P/AxxS motifs of HdmX ((8)AQCS(11) and (398)AHSS(401)). The crystal structure of the USP7-NTD:HdmX(AHSS) complex was determined providing the molecular basis of complex formation between USP7-NTD and the HdmX(AHSS) peptide. The HdmX peptide interacted within the same residues of USP7-NTD as previously demonstrated with p53, Hdm2, and EBNA1 peptides. We also identified an additional site on Hdm2 ((397)PSTS(400)) that interacts with USP7-NTD and determined the crystal structure of this complex. Finally, analysis of USP7-interacting peptides on filter arrays confirmed the importance of the serine residue at the fourth position for the USP7-NTD interaction and showed that phosphorylation of serines within the binding sequence prevents this interaction. These results lead to a better understanding of the mechanism of substrate recognition by USP7-NTD.
Cukier,2010 (20711187) Cukier CD, Hollingworth D, Martin SR, Kelly G, Diaz-Moreno I, Ramos A "Molecular basis of FIR-mediated c-myc transcriptional control." Nat Struct Mol Biol 2010 Sep 03
The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.
Hamill,2010 (20696927) Hamill S, Wolin SL, Reinisch KM "Structure and function of the polymerase core of TRAMP, a RNA surveillance complex." Proc Natl Acad Sci U S A 2010 Aug 25
The Trf4p/Air2p/Mtr4p polyadenylation (TRAMP) complex recognizes aberrant RNAs in Saccharomyces cerevisiae and targets them for degradation. A TRAMP subcomplex consisting of a noncanonical poly(A) RNA polymerase in the Pol ss superfamily of nucleotidyl transferases, Trf4p, and a zinc knuckle protein, Air2p, mediates initial substrate recognition. Trf4p and related eukaryotic poly(A) and poly(U) polymerases differ from other characterized enzymes in the Pol ss superfamily both in sequence and in the lack of recognizable nucleic acid binding motifs. Here we report, at 2.7-A resolution, the structure of Trf4p in complex with a fragment of Air2p comprising two zinc knuckle motifs. Trf4p consists of a catalytic and central domain similar in fold to those of other noncanonical Pol beta RNA polymerases, and the two zinc knuckle motifs of Air2p interact with the Trf4p central domain. The interaction surface on Trf4p is highly conserved across eukaryotes, providing evidence that the Trf4p/Air2p complex is conserved in higher eukaryotes as well as in yeast and that the TRAMP complex may also function in RNA surveillance in higher eukaryotes. We show that Air2p, and in particular sequences encompassing a zinc knuckle motif near its N terminus, modulate Trf4p activity, and we present data supporting a role for this zinc knuckle in RNA binding. Finally, we show that the RNA 3' end plays a role in substrate recognition.
Hirschi,2010 (20694007) Hirschi A, Cecchini M, Steinhardt RC, Schamber MR, Dick FA, Rubin SM "An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein." Nat Struct Mol Biol 2010 Sep 03
The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking.
Inuzuka,2010 (20691033) Inuzuka T, Suzuki H, Kawasaki M, Shibata H, Wakatsuki S, Maki M "Molecular basis for defect in Alix-binding by alternatively spliced isoform of ALG-2 (ALG-2DeltaGF122) and structural roles of F122 in target recognition." BMC Struct Biol 2010 Aug 25
BACKGROUND: ALG-2 (a gene product of PDCD6) belongs to the penta-EF-hand (PEF) protein family and Ca2+-dependently interacts with various intracellular proteins including mammalian Alix, an adaptor protein in the ESCRT system. Our previous X-ray crystal structural analyses revealed that binding of Ca2+ to EF3 enables the side chain of R125 to move enough to make a primary hydrophobic pocket (Pocket 1) accessible to a short fragment of Alix. The side chain of F122, facing a secondary hydrophobic pocket (Pocket 2), interacts with the Alix peptide. An alternatively spliced shorter isoform, designated ALG-2DeltaGF122, lacks Gly121Phe122 and does not bind Alix, but the structural basis of the incompetence has remained to be elucidated. RESULTS: We solved the X-ray crystal structure of the PEF domain of ALG-2DeltaGF122 in the Ca2+-bound form and compared it with that of ALG-2. Deletion of the two residues shortened alpha-helix 5 (alpha5) and changed the configuration of the R125 side chain so that it partially blocked Pocket 1. A wall created by the main chain of 121-GFG-123 and facing the two pockets was destroyed. Surprisingly, however, substitution of F122 with Ala or Gly, but not with Trp, increased the Alix-binding capacity in binding assays. The F122 substitutions exhibited different effects on binding of ALG-2 to other known interacting proteins, including TSG101 (Tumor susceptibility gene 101) and annexin A11. The X-ray crystal structure of the F122A mutant revealed that removal of the bulky F122 side chain not only created an additional open space in Pocket 2 but also abolished inter-helix interactions with W95 and V98 (present in alpha4) and that alpha5 inclined away from alpha4 to expand Pocket 2, suggesting acquirement of more appropriate positioning of the interacting residues to accept Alix. CONCLUSIONS: We found that the inability of the two-residue shorter ALG-2 isoform to bind Alix is not due to the absence of bulky side chain of F122 but due to deformation of a main-chain wall facing pockets 1 and 2. Moreover, a residue at the position of F122 contributes to target specificity and a smaller side chain is preferable for Alix binding but not favored to bind annexin A11.
Saxena,2010 (20682773) Saxena UH, Owens L, Graham JR, Cooper GM, Hansen U "Prolyl isomerase Pin1 regulates transcription factor LSF (TFCP2) by facilitating dephosphorylation at two serine-proline motifs." J Biol Chem 2010 Oct 8
Transcription factor LSF is essential for cell cycle progression, being required for activating expression of the thymidylate synthase (Tyms) gene at the G1/S transition. We previously established that phosphorylation of LSF in early G1 at Ser-291 and Ser-309 inhibits its transcriptional activity and that dephosphorylation later in G1 is required for its reactivation. Here we reveal the role of prolyl cis-trans isomerase Pin1 in activating LSF, by facilitating dephosphorylation at both Ser-291 and Ser-309. We demonstrate that Pin1 binds LSF both in vitro and in vivo. Using coimmunoprecipitation assays, we identify three SP/TP motifs in LSF (at residues Ser-291, Ser-309, and Thr-329) that are required and sufficient for association with Pin1. Co-expression of Pin1 enhances LSF transactivation potential in reporter assays. The Pin1-dependent enhancement of LSF activity requires residue Thr-329 in LSF, requires both the WW and PPiase domains of Pin1, and correlates with hypophosphorylation of LSF at Ser-291 and Ser-309. These findings support a model in which the binding of Pin1 at the Thr-329-Pro-330 motif in LSF permits isomerization by Pin1 of the peptide bonds at the nearby phosphorylated SP motifs (Ser-291 and Ser-309) to the trans configuration, thereby facilitating their dephosphorylation.
Molzan,2010 (20679480) Molzan M, Schumacher B, Ottmann C, Baljuls A, Polzien L, Weyand M, Thiel P, Rose R, Rose M, Kuhenne P, Kaiser M, Rapp UR, Kuhlmann J "Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling." Mol Cell Biol 2010 Sep 10
The Ras-RAF-mitogen-activated protein kinase (Ras-RAF-MAPK) pathway is overactive in many cancers and in some developmental disorders. In one of those disorders, namely, Noonan syndrome, nine activating C-RAF mutations cluster around Ser(259), a regulatory site for inhibition by 14-3-3 proteins. We show that these mutations impair binding of 14-3-3 proteins to C-RAF and alter its subcellular localization by promoting Ras-mediated plasma membrane recruitment of C-RAF. By presenting biophysical binding data, the 14-3-3/C-RAFpS(259) crystal structure, and cellular analyses, we indicate a mechanistic link between a well-described human developmental disorder and the impairment of a 14-3-3/target protein interaction. As a broader implication of these findings, modulating the C-RAFSer(259)/14-3-3 protein-protein interaction with a stabilizing small molecule may yield a novel potential approach for treatment of diseases resulting from an overactive Ras-RAF-MAPK pathway.
Nakatsu,2010 (20675384) Nakatsu Y, Sakoda H, Kushiyama A, Ono H, Fujishiro M, Horike N, Yoneda M, Ohno H, Tsuchiya Y, Kamata H, Tahara H, Isobe T, Nishimura F, Katagiri H, Oka Y, Fukushima T, Takahashi S, Kurihara H, Uchida T, Asano T "Pin1 associates with and induces translocation of CRTC2 to the cytosol, thereby suppressing cAMP-responsive element transcriptional activity." J Biol Chem 2010 Oct 22
Pin1 is a unique regulator, which catalyzes the conversion of a specific phospho-Ser/Thr-Pro-containing motif in target proteins. Herein, we identified CRTC2 as a Pin1-binding protein by overexpressing Pin1 with Myc and FLAG tags in mouse livers and subsequent purification of the complex containing Pin1. The association between Pin1 and CRTC2 was observed not only in overexpression experiments but also endogenously in the mouse liver. Interestingly, Ser(136) in the nuclear localization signal of CRTC2 was shown to be involved in the association with Pin1. Pin1 overexpression in HepG2 cells attenuated forskolin-induced nuclear localization of CRTC2 and cAMP-responsive element (CRE) transcriptional activity, whereas gene knockdown of Pin1 by siRNA enhanced both. Pin1 also associated with CRTC1, leading to their cytosol localization, essentially similar to the action of CRTC2. Furthermore, it was shown that CRTC2 associated with Pin1 did not bind to CREB. Taken together, these observations indicate the association of Pin1 with CRTC2 to decrease the nuclear CBP.CRTC.CREB complex. Indeed, adenoviral gene transfer of Pin1 into diabetic mice improved hyperglycemia in conjunction with normalizing phosphoenolpyruvate carboxykinase mRNA expression levels, which is regulated by CRE transcriptional activity. In conclusion, Pin1 regulates CRE transcriptional activity, by associating with CRTC1 or CRTC2.
Rellos,2010 (20668654) Rellos P, Pike AC, Niesen FH, Salah E, Lee WH, von Delft F, Knapp S "Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation." PLoS Biol 2010 Jul 29
Long-term potentiation (LTP), a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM)-dependent kinase II (CaMKII). CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.
Mitchell,2010 (20667914) Mitchell NC, Johanson TM, Cranna NJ, Er AL, Richardson HE, Hannan RD, Quinn LM "Hfp inhibits Drosophila myc transcription and cell growth in a TFIIH/Hay-dependent manner." Development 2010 Aug 11
An unresolved question regarding the RNA-recognition motif (RRM) protein Half pint (Hfp) has been whether its tumour suppressor behaviour occurs by a transcriptional mechanism or via effects on splicing. The data presented here demonstrate that Hfp achieves cell cycle inhibition via an essential role in the repression of Drosophila myc (dmyc) transcription. We demonstrate that regulation of dmyc requires interaction between the transcriptional repressor Hfp and the DNA helicase subunit of TFIIH, Haywire (Hay). In vivo studies show that Hfp binds to the dmyc promoter and that repression of dmyc transcription requires Hfp. In addition, loss of Hfp results in enhanced cell growth, which depends on the presence of dMyc. This is consistent with Hfp being essential for inhibition of dmyc transcription and cell growth. Further support for Hfp controlling dmyc transcriptionally comes from the demonstration that Hfp physically and genetically interacts with the XPB helicase component of the TFIIH transcription factor complex, Hay, which is required for normal levels of dmyc expression, cell growth and cell cycle progression. Together, these data demonstrate that Hfp is crucial for repression of dmyc, suggesting that a transcriptional, rather than splicing, mechanism underlies the regulation of dMyc and the tumour suppressor behaviour of Hfp.
Price,2010 (20660614) Price CT, Al-Quadan T, Santic M, Jones SC, Abu Kwaik Y "Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila." J Exp Med 2010 Aug 02
Farnesylation involves covalent linkage of eukaryotic proteins to a lipid moiety to anchor them into membranes, which is essential for the biological function of Ras and other proteins. A large cadre of bacterial effectors is injected into host cells by intravacuolar pathogens through elaborate type III-VII translocation machineries, and many of these effectors are incorporated into the pathogen-containing vacuolar membrane by unknown mechanisms. The Dot/Icm type IV secretion system of Legionella pneumophila injects into host cells the F-box effector Ankyrin B (AnkB), which functions as platforms for the docking of polyubiquitinated proteins to the Legionella-containing vacuole (LCV) to enable intravacuolar proliferation in macrophages and amoeba. We show that farnesylation of AnkB is indispensable for its anchoring to the cytosolic face of the LCV membrane, for its biological function within macrophages and Dictyostelium discoideum, and for intrapulmonary proliferation in mice. Remarkably, the protein farnesyltransferase, RCE-1 (Ras-converting enzyme-1), and isoprenyl cysteine carboxyl methyltransferase host farnesylation enzymes are recruited to the LCV in a Dot/Icm-dependent manner and are essential for the biological function of AnkB. In conclusion, this study shows novel localized recruitment of the host farnesylation machinery and its anchoring of an F-box effector to the LCV membrane, and this is essential for biological function in vitro and in vivo.
Sharma,2010 (20634894) Sharma P, Ignatchenko V, Grace K, Ursprung C, Kislinger T, Gramolini AO "Endoplasmic reticulum protein targeting of phospholamban: a common role for an N-terminal di-arginine motif in ER retention?" PLoS One 2010 Jul 16
BACKGROUND: Phospholamban (PLN) is an effective inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase, which transports Ca(2+) into the SR lumen, leading to muscle relaxation. A mutation of PLN in which one of the di-arginine residues at positions 13 and 14 was deleted led to a severe, early onset dilated cardiomyopathy. Here we were interested in determining the cellular mechanisms involved in this disease-causing mutation. METHODOLOGY/PRINCIPAL FINDING: Mutations deleting codons for either or both Arg13 or Arg14 resulted in the mislocalization of PLN from the ER. Our data show that PLN is recycled via the retrograde Golgi to ER membrane traffic pathway involving COP-I vesicles, since co-immunoprecipitation assays determined that COP I interactions are dependent on an intact di-arginine motif as PLN RDelta14 did not co-precipitate with COP I containing vesicles. Bioinformatic analysis determined that the di-arginine motif is present in the first 25 residues in a large number of all ER/SR Gene Ontology (GO) annotated proteins. Mutations in the di-arginine motif of the Sigma 1-type opioid receptor, the beta-subunit of the signal recognition particle receptor, and Sterol-O-acyltransferase, three proteins identified in our bioinformatic screen also caused mislocalization of these known ER-resident proteins. CONCLUSION: We conclude that PLN is enriched in the ER due to COP I-mediated transport that is dependent on its intact di-arginine motif and that the N-terminal di-arginine motif may act as a general ER retrieval sequence.
Liu,2010 (20627867) Liu BA, Jablonowski K, Shah EE, Engelmann BW, Jones RB, Nash PD "SH2 domains recognize contextual peptide sequence information to determine selectivity." Mol Cell Proteomics 2010 Nov
Selective ligand recognition by modular protein interaction domains is a primary determinant of specificity in signaling pathways. Src homology 2 (SH2) domains fulfill this capacity immediately downstream of tyrosine kinases, acting to recruit their host polypeptides to ligand proteins harboring phosphorylated tyrosine residues. The degree to which SH2 domains are selective and the mechanisms underlying selectivity are fundamental to understanding phosphotyrosine signaling networks. An examination of interactions between 50 SH2 domains and a set of 192 phosphotyrosine peptides corresponding to physiological motifs within FGF, insulin, and IGF-1 receptor pathways indicates that individual SH2 domains have distinct recognition properties and exhibit a remarkable degree of selectivity beyond that predicted by previously described binding motifs. The underlying basis for such selectivity is the ability of SH2 domains to recognize both permissive amino acid residues that enhance binding and non-permissive amino acid residues that oppose binding in the vicinity of the essential phosphotyrosine. Neighboring positions affect one another so local sequence context matters to SH2 domains. This complex linguistics allows SH2 domains to distinguish subtle differences in peptide ligands. This newly appreciated contextual dependence substantially increases the accessible information content embedded in the peptide ligands that can be effectively integrated to determine binding. This concept may serve more broadly as a paradigm for subtle recognition of physiological ligands by protein interaction domains.
Graciet,2010 (20627801) Graciet E, Wellmer F "The plant N-end rule pathway: structure and functions." Trends Plant Sci 2010 Aug 09
The N-end rule pathway is a protein degradation pathway that relates the stability of a protein to the nature of its N-terminal amino acid residue. This pathway is part of the ubiquitin-proteasome system in eukaryotes and has been shown to be involved in a multitude of cellular and developmental processes in animals and fungi. However, in plants, its structure and functions have long been enigmatic. In this review, we discuss recent advances in the identification of the enzymatic components that mediate protein degradation through the N-end rule pathway in plants. We further describe the known functions of this pathway in the control of plant growth and development and outline open questions that will likely be the focus of future research.
Mehlitz,2010 (20624904) Mehlitz A, Banhart S, Maurer AP, Kaushansky A, Gordus AG, Zielecki J, Macbeath G, Meyer TF "Tarp regulates early Chlamydia-induced host cell survival through interactions with the human adaptor protein SHC1." J Cell Biol 2010 Jul 13
Many bacterial pathogens translocate effector proteins into host cells to manipulate host cell functions. Here, we used a protein microarray comprising virtually all human SRC homology 2 (SH2) and phosphotyrosine binding domains to comprehensively and quantitatively assess interactions between host cell proteins and the early phase Chlamydia trachomatis effector protein translocated actin-recruiting phosphoprotein (Tarp), which is rapidly tyrosine phosphorylated upon host cell entry. We discovered numerous novel interactions between human SH2 domains and phosphopeptides derived from Tarp. The adaptor protein SHC1 was among Tarp's strongest interaction partners. Transcriptome analysis of SHC1-dependent gene regulation during infection indicated that SHC1 regulates apoptosis- and growth-related genes. SHC1 knockdown sensitized infected host cells to tumor necrosis factor-induced apoptosis. Collectively, our findings reveal a critical role for SHC1 in early C. trachomatis-induced cell survival and suggest that Tarp functions as a multivalent phosphorylation-dependent signaling hub that is important during the early phase of chlamydial infection.